![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opsrbaslem 21989 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opsrbas.s | β’ π = (πΌ mPwSer π ) |
opsrbas.o | β’ π = ((πΌ ordPwSer π )βπ) |
opsrbas.t | β’ (π β π β (πΌ Γ πΌ)) |
opsrbaslemOLD.1 | β’ πΈ = Slot π |
opsrbaslemOLD.2 | β’ π β β |
opsrbaslemOLD.3 | β’ π < ;10 |
Ref | Expression |
---|---|
opsrbaslemOLD | β’ (π β (πΈβπ) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslemOLD.1 | . . . . 5 β’ πΈ = Slot π | |
2 | opsrbaslemOLD.2 | . . . . 5 β’ π β β | |
3 | 1, 2 | ndxid 17160 | . . . 4 β’ πΈ = Slot (πΈβndx) |
4 | 2 | nnrei 12246 | . . . . . 6 β’ π β β |
5 | opsrbaslemOLD.3 | . . . . . 6 β’ π < ;10 | |
6 | 4, 5 | ltneii 11352 | . . . . 5 β’ π β ;10 |
7 | 1, 2 | ndxarg 17159 | . . . . . 6 β’ (πΈβndx) = π |
8 | plendx 17341 | . . . . . 6 β’ (leβndx) = ;10 | |
9 | 7, 8 | neeq12i 2997 | . . . . 5 β’ ((πΈβndx) β (leβndx) β π β ;10) |
10 | 6, 9 | mpbir 230 | . . . 4 β’ (πΈβndx) β (leβndx) |
11 | 3, 10 | setsnid 17172 | . . 3 β’ (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©)) |
12 | opsrbas.s | . . . . 5 β’ π = (πΌ mPwSer π ) | |
13 | opsrbas.o | . . . . 5 β’ π = ((πΌ ordPwSer π )βπ) | |
14 | eqid 2725 | . . . . 5 β’ (leβπ) = (leβπ) | |
15 | simprl 769 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β πΌ β V) | |
16 | simprr 771 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β V) | |
17 | opsrbas.t | . . . . . 6 β’ (π β π β (πΌ Γ πΌ)) | |
18 | 17 | adantr 479 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β (πΌ Γ πΌ)) |
19 | 12, 13, 14, 15, 16, 18 | opsrval2 21988 | . . . 4 β’ ((π β§ (πΌ β V β§ π β V)) β π = (π sSet β¨(leβndx), (leβπ)β©)) |
20 | 19 | fveq2d 6894 | . . 3 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©))) |
21 | 11, 20 | eqtr4id 2784 | . 2 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
22 | 0fv 6934 | . . . . . . 7 β’ (β βπ) = β | |
23 | 22 | eqcomi 2734 | . . . . . 6 β’ β = (β βπ) |
24 | reldmpsr 21846 | . . . . . . 7 β’ Rel dom mPwSer | |
25 | 24 | ovprc 7451 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = β ) |
26 | reldmopsr 21985 | . . . . . . . 8 β’ Rel dom ordPwSer | |
27 | 26 | ovprc 7451 | . . . . . . 7 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ ordPwSer π ) = β ) |
28 | 27 | fveq1d 6892 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β ((πΌ ordPwSer π )βπ) = (β βπ)) |
29 | 23, 25, 28 | 3eqtr4a 2791 | . . . . 5 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
30 | 29 | adantl 480 | . . . 4 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
31 | 30, 12, 13 | 3eqtr4g 2790 | . . 3 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β π = π) |
32 | 31 | fveq2d 6894 | . 2 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
33 | 21, 32 | pm2.61dan 811 | 1 β’ (π β (πΈβπ) = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 β wss 3941 β c0 4319 β¨cop 4631 class class class wbr 5144 Γ cxp 5671 βcfv 6543 (class class class)co 7413 0cc0 11133 1c1 11134 < clt 11273 βcn 12237 ;cdc 12702 sSet csts 17126 Slot cslot 17144 ndxcnx 17156 lecple 17234 mPwSer cmps 21836 ordPwSer copws 21840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-ltxr 11278 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-dec 12703 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ple 17247 df-psr 21841 df-opsr 21845 |
This theorem is referenced by: opsrbasOLD 21992 opsrplusgOLD 21994 opsrmulrOLD 21996 opsrvscaOLD 21998 opsrscaOLD 22000 |
Copyright terms: Public domain | W3C validator |