MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrbaslemOLD Structured version   Visualization version   GIF version

Theorem opsrbaslemOLD 22091
Description: Obsolete version of opsrbaslem 22090 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
opsrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrbas.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrbas.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrbaslemOLD.1 𝐸 = Slot 𝑁
opsrbaslemOLD.2 𝑁 ∈ ℕ
opsrbaslemOLD.3 𝑁 < 10
Assertion
Ref Expression
opsrbaslemOLD (𝜑 → (𝐸𝑆) = (𝐸𝑂))

Proof of Theorem opsrbaslemOLD
StepHypRef Expression
1 opsrbaslemOLD.1 . . . . 5 𝐸 = Slot 𝑁
2 opsrbaslemOLD.2 . . . . 5 𝑁 ∈ ℕ
31, 2ndxid 17244 . . . 4 𝐸 = Slot (𝐸‘ndx)
42nnrei 12302 . . . . . 6 𝑁 ∈ ℝ
5 opsrbaslemOLD.3 . . . . . 6 𝑁 < 10
64, 5ltneii 11403 . . . . 5 𝑁10
71, 2ndxarg 17243 . . . . . 6 (𝐸‘ndx) = 𝑁
8 plendx 17425 . . . . . 6 (le‘ndx) = 10
97, 8neeq12i 3013 . . . . 5 ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝑁10)
106, 9mpbir 231 . . . 4 (𝐸‘ndx) ≠ (le‘ndx)
113, 10setsnid 17256 . . 3 (𝐸𝑆) = (𝐸‘(𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
12 opsrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
13 opsrbas.o . . . . 5 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
14 eqid 2740 . . . . 5 (le‘𝑂) = (le‘𝑂)
15 simprl 770 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V)
16 simprr 772 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V)
17 opsrbas.t . . . . . 6 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼))
1912, 13, 14, 15, 16, 18opsrval2 22089 . . . 4 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
2019fveq2d 6924 . . 3 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑂) = (𝐸‘(𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
2111, 20eqtr4id 2799 . 2 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑆) = (𝐸𝑂))
22 0fv 6964 . . . . . . 7 (∅‘𝑇) = ∅
2322eqcomi 2749 . . . . . 6 ∅ = (∅‘𝑇)
24 reldmpsr 21957 . . . . . . 7 Rel dom mPwSer
2524ovprc 7486 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
26 reldmopsr 22086 . . . . . . . 8 Rel dom ordPwSer
2726ovprc 7486 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅)
2827fveq1d 6922 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇))
2923, 25, 283eqtr4a 2806 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇))
3029adantl 481 . . . 4 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇))
3130, 12, 133eqtr4g 2805 . . 3 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑆 = 𝑂)
3231fveq2d 6924 . 2 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑆) = (𝐸𝑂))
3321, 32pm2.61dan 812 1 (𝜑 → (𝐸𝑆) = (𝐸𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   < clt 11324  cn 12293  cdc 12758   sSet csts 17210  Slot cslot 17228  ndxcnx 17240  lecple 17318   mPwSer cmps 21947   ordPwSer copws 21951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ple 17331  df-psr 21952  df-opsr 21956
This theorem is referenced by:  opsrbasOLD  22093  opsrplusgOLD  22095  opsrmulrOLD  22097  opsrvscaOLD  22099  opsrscaOLD  22101
  Copyright terms: Public domain W3C validator