Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsrbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opsrbaslem 21348 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opsrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsrbas.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrbas.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
opsrbaslemOLD.1 | ⊢ 𝐸 = Slot 𝑁 |
opsrbaslemOLD.2 | ⊢ 𝑁 ∈ ℕ |
opsrbaslemOLD.3 | ⊢ 𝑁 < ;10 |
Ref | Expression |
---|---|
opsrbaslemOLD | ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslemOLD.1 | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
2 | opsrbaslemOLD.2 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16987 | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 12075 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
5 | opsrbaslemOLD.3 | . . . . . 6 ⊢ 𝑁 < ;10 | |
6 | 4, 5 | ltneii 11181 | . . . . 5 ⊢ 𝑁 ≠ ;10 |
7 | 1, 2 | ndxarg 16986 | . . . . . 6 ⊢ (𝐸‘ndx) = 𝑁 |
8 | plendx 17165 | . . . . . 6 ⊢ (le‘ndx) = ;10 | |
9 | 7, 8 | neeq12i 3007 | . . . . 5 ⊢ ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝑁 ≠ ;10) |
10 | 6, 9 | mpbir 230 | . . . 4 ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
11 | 3, 10 | setsnid 16999 | . . 3 ⊢ (𝐸‘𝑆) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
12 | opsrbas.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
13 | opsrbas.o | . . . . 5 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
14 | eqid 2736 | . . . . 5 ⊢ (le‘𝑂) = (le‘𝑂) | |
15 | simprl 768 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
16 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
17 | opsrbas.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
18 | 17 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼)) |
19 | 12, 13, 14, 15, 16, 18 | opsrval2 21347 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
20 | 19 | fveq2d 6823 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑂) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉))) |
21 | 11, 20 | eqtr4id 2795 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
22 | 0fv 6863 | . . . . . . 7 ⊢ (∅‘𝑇) = ∅ | |
23 | 22 | eqcomi 2745 | . . . . . 6 ⊢ ∅ = (∅‘𝑇) |
24 | reldmpsr 21215 | . . . . . . 7 ⊢ Rel dom mPwSer | |
25 | 24 | ovprc 7367 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
26 | reldmopsr 21344 | . . . . . . . 8 ⊢ Rel dom ordPwSer | |
27 | 26 | ovprc 7367 | . . . . . . 7 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅) |
28 | 27 | fveq1d 6821 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇)) |
29 | 23, 25, 28 | 3eqtr4a 2802 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
30 | 29 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
31 | 30, 12, 13 | 3eqtr4g 2801 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑆 = 𝑂) |
32 | 31 | fveq2d 6823 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
33 | 21, 32 | pm2.61dan 810 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ⊆ wss 3897 ∅c0 4268 〈cop 4578 class class class wbr 5089 × cxp 5612 ‘cfv 6473 (class class class)co 7329 0cc0 10964 1c1 10965 < clt 11102 ℕcn 12066 ;cdc 12530 sSet csts 16953 Slot cslot 16971 ndxcnx 16983 lecple 17058 mPwSer cmps 21205 ordPwSer copws 21209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-ltxr 11107 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-dec 12531 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ple 17071 df-psr 21210 df-opsr 21214 |
This theorem is referenced by: opsrbasOLD 21351 opsrplusgOLD 21353 opsrmulrOLD 21355 opsrvscaOLD 21357 opsrscaOLD 21359 |
Copyright terms: Public domain | W3C validator |