![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opsrbaslem 21974 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opsrbas.s | β’ π = (πΌ mPwSer π ) |
opsrbas.o | β’ π = ((πΌ ordPwSer π )βπ) |
opsrbas.t | β’ (π β π β (πΌ Γ πΌ)) |
opsrbaslemOLD.1 | β’ πΈ = Slot π |
opsrbaslemOLD.2 | β’ π β β |
opsrbaslemOLD.3 | β’ π < ;10 |
Ref | Expression |
---|---|
opsrbaslemOLD | β’ (π β (πΈβπ) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslemOLD.1 | . . . . 5 β’ πΈ = Slot π | |
2 | opsrbaslemOLD.2 | . . . . 5 β’ π β β | |
3 | 1, 2 | ndxid 17157 | . . . 4 β’ πΈ = Slot (πΈβndx) |
4 | 2 | nnrei 12243 | . . . . . 6 β’ π β β |
5 | opsrbaslemOLD.3 | . . . . . 6 β’ π < ;10 | |
6 | 4, 5 | ltneii 11349 | . . . . 5 β’ π β ;10 |
7 | 1, 2 | ndxarg 17156 | . . . . . 6 β’ (πΈβndx) = π |
8 | plendx 17338 | . . . . . 6 β’ (leβndx) = ;10 | |
9 | 7, 8 | neeq12i 3002 | . . . . 5 β’ ((πΈβndx) β (leβndx) β π β ;10) |
10 | 6, 9 | mpbir 230 | . . . 4 β’ (πΈβndx) β (leβndx) |
11 | 3, 10 | setsnid 17169 | . . 3 β’ (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©)) |
12 | opsrbas.s | . . . . 5 β’ π = (πΌ mPwSer π ) | |
13 | opsrbas.o | . . . . 5 β’ π = ((πΌ ordPwSer π )βπ) | |
14 | eqid 2727 | . . . . 5 β’ (leβπ) = (leβπ) | |
15 | simprl 770 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β πΌ β V) | |
16 | simprr 772 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β V) | |
17 | opsrbas.t | . . . . . 6 β’ (π β π β (πΌ Γ πΌ)) | |
18 | 17 | adantr 480 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β (πΌ Γ πΌ)) |
19 | 12, 13, 14, 15, 16, 18 | opsrval2 21973 | . . . 4 β’ ((π β§ (πΌ β V β§ π β V)) β π = (π sSet β¨(leβndx), (leβπ)β©)) |
20 | 19 | fveq2d 6895 | . . 3 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©))) |
21 | 11, 20 | eqtr4id 2786 | . 2 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
22 | 0fv 6935 | . . . . . . 7 β’ (β βπ) = β | |
23 | 22 | eqcomi 2736 | . . . . . 6 β’ β = (β βπ) |
24 | reldmpsr 21834 | . . . . . . 7 β’ Rel dom mPwSer | |
25 | 24 | ovprc 7452 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = β ) |
26 | reldmopsr 21970 | . . . . . . . 8 β’ Rel dom ordPwSer | |
27 | 26 | ovprc 7452 | . . . . . . 7 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ ordPwSer π ) = β ) |
28 | 27 | fveq1d 6893 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β ((πΌ ordPwSer π )βπ) = (β βπ)) |
29 | 23, 25, 28 | 3eqtr4a 2793 | . . . . 5 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
30 | 29 | adantl 481 | . . . 4 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
31 | 30, 12, 13 | 3eqtr4g 2792 | . . 3 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β π = π) |
32 | 31 | fveq2d 6895 | . 2 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
33 | 21, 32 | pm2.61dan 812 | 1 β’ (π β (πΈβπ) = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2935 Vcvv 3469 β wss 3944 β c0 4318 β¨cop 4630 class class class wbr 5142 Γ cxp 5670 βcfv 6542 (class class class)co 7414 0cc0 11130 1c1 11131 < clt 11270 βcn 12234 ;cdc 12699 sSet csts 17123 Slot cslot 17141 ndxcnx 17153 lecple 17231 mPwSer cmps 21824 ordPwSer copws 21828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-ltxr 11275 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-dec 12700 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ple 17244 df-psr 21829 df-opsr 21833 |
This theorem is referenced by: opsrbasOLD 21977 opsrplusgOLD 21979 opsrmulrOLD 21981 opsrvscaOLD 21983 opsrscaOLD 21985 |
Copyright terms: Public domain | W3C validator |