![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opsrbaslem 21603 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opsrbas.s | β’ π = (πΌ mPwSer π ) |
opsrbas.o | β’ π = ((πΌ ordPwSer π )βπ) |
opsrbas.t | β’ (π β π β (πΌ Γ πΌ)) |
opsrbaslemOLD.1 | β’ πΈ = Slot π |
opsrbaslemOLD.2 | β’ π β β |
opsrbaslemOLD.3 | β’ π < ;10 |
Ref | Expression |
---|---|
opsrbaslemOLD | β’ (π β (πΈβπ) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslemOLD.1 | . . . . 5 β’ πΈ = Slot π | |
2 | opsrbaslemOLD.2 | . . . . 5 β’ π β β | |
3 | 1, 2 | ndxid 17129 | . . . 4 β’ πΈ = Slot (πΈβndx) |
4 | 2 | nnrei 12220 | . . . . . 6 β’ π β β |
5 | opsrbaslemOLD.3 | . . . . . 6 β’ π < ;10 | |
6 | 4, 5 | ltneii 11326 | . . . . 5 β’ π β ;10 |
7 | 1, 2 | ndxarg 17128 | . . . . . 6 β’ (πΈβndx) = π |
8 | plendx 17310 | . . . . . 6 β’ (leβndx) = ;10 | |
9 | 7, 8 | neeq12i 3007 | . . . . 5 β’ ((πΈβndx) β (leβndx) β π β ;10) |
10 | 6, 9 | mpbir 230 | . . . 4 β’ (πΈβndx) β (leβndx) |
11 | 3, 10 | setsnid 17141 | . . 3 β’ (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©)) |
12 | opsrbas.s | . . . . 5 β’ π = (πΌ mPwSer π ) | |
13 | opsrbas.o | . . . . 5 β’ π = ((πΌ ordPwSer π )βπ) | |
14 | eqid 2732 | . . . . 5 β’ (leβπ) = (leβπ) | |
15 | simprl 769 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β πΌ β V) | |
16 | simprr 771 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β V) | |
17 | opsrbas.t | . . . . . 6 β’ (π β π β (πΌ Γ πΌ)) | |
18 | 17 | adantr 481 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β (πΌ Γ πΌ)) |
19 | 12, 13, 14, 15, 16, 18 | opsrval2 21602 | . . . 4 β’ ((π β§ (πΌ β V β§ π β V)) β π = (π sSet β¨(leβndx), (leβπ)β©)) |
20 | 19 | fveq2d 6895 | . . 3 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©))) |
21 | 11, 20 | eqtr4id 2791 | . 2 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
22 | 0fv 6935 | . . . . . . 7 β’ (β βπ) = β | |
23 | 22 | eqcomi 2741 | . . . . . 6 β’ β = (β βπ) |
24 | reldmpsr 21466 | . . . . . . 7 β’ Rel dom mPwSer | |
25 | 24 | ovprc 7446 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = β ) |
26 | reldmopsr 21599 | . . . . . . . 8 β’ Rel dom ordPwSer | |
27 | 26 | ovprc 7446 | . . . . . . 7 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ ordPwSer π ) = β ) |
28 | 27 | fveq1d 6893 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β ((πΌ ordPwSer π )βπ) = (β βπ)) |
29 | 23, 25, 28 | 3eqtr4a 2798 | . . . . 5 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
30 | 29 | adantl 482 | . . . 4 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
31 | 30, 12, 13 | 3eqtr4g 2797 | . . 3 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β π = π) |
32 | 31 | fveq2d 6895 | . 2 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
33 | 21, 32 | pm2.61dan 811 | 1 β’ (π β (πΈβπ) = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 Vcvv 3474 β wss 3948 β c0 4322 β¨cop 4634 class class class wbr 5148 Γ cxp 5674 βcfv 6543 (class class class)co 7408 0cc0 11109 1c1 11110 < clt 11247 βcn 12211 ;cdc 12676 sSet csts 17095 Slot cslot 17113 ndxcnx 17125 lecple 17203 mPwSer cmps 21456 ordPwSer copws 21460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-dec 12677 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ple 17216 df-psr 21461 df-opsr 21465 |
This theorem is referenced by: opsrbasOLD 21606 opsrplusgOLD 21608 opsrmulrOLD 21610 opsrvscaOLD 21612 opsrscaOLD 21614 |
Copyright terms: Public domain | W3C validator |