Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsrbaslemOLD | Structured version Visualization version GIF version |
Description: Obsolete version of opsrbaslem 21135 as of 1-Nov-2024. Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
opsrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsrbas.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrbas.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
opsrbaslemOLD.1 | ⊢ 𝐸 = Slot 𝑁 |
opsrbaslemOLD.2 | ⊢ 𝑁 ∈ ℕ |
opsrbaslemOLD.3 | ⊢ 𝑁 < ;10 |
Ref | Expression |
---|---|
opsrbaslemOLD | ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslemOLD.1 | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
2 | opsrbaslemOLD.2 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16801 | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 2 | nnrei 11887 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
5 | opsrbaslemOLD.3 | . . . . . 6 ⊢ 𝑁 < ;10 | |
6 | 4, 5 | ltneii 10993 | . . . . 5 ⊢ 𝑁 ≠ ;10 |
7 | 1, 2 | ndxarg 16800 | . . . . . 6 ⊢ (𝐸‘ndx) = 𝑁 |
8 | plendx 16975 | . . . . . 6 ⊢ (le‘ndx) = ;10 | |
9 | 7, 8 | neeq12i 3010 | . . . . 5 ⊢ ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝑁 ≠ ;10) |
10 | 6, 9 | mpbir 234 | . . . 4 ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
11 | 3, 10 | setsnid 16813 | . . 3 ⊢ (𝐸‘𝑆) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
12 | opsrbas.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
13 | opsrbas.o | . . . . 5 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
14 | eqid 2739 | . . . . 5 ⊢ (le‘𝑂) = (le‘𝑂) | |
15 | simprl 771 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
16 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
17 | opsrbas.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
18 | 17 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼)) |
19 | 12, 13, 14, 15, 16, 18 | opsrval2 21134 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
20 | 19 | fveq2d 6757 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑂) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉))) |
21 | 11, 20 | eqtr4id 2799 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
22 | 0fv 6792 | . . . . . . 7 ⊢ (∅‘𝑇) = ∅ | |
23 | 22 | eqcomi 2748 | . . . . . 6 ⊢ ∅ = (∅‘𝑇) |
24 | reldmpsr 21002 | . . . . . . 7 ⊢ Rel dom mPwSer | |
25 | 24 | ovprc 7290 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
26 | reldmopsr 21131 | . . . . . . . 8 ⊢ Rel dom ordPwSer | |
27 | 26 | ovprc 7290 | . . . . . . 7 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅) |
28 | 27 | fveq1d 6755 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇)) |
29 | 23, 25, 28 | 3eqtr4a 2806 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
30 | 29 | adantl 485 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
31 | 30, 12, 13 | 3eqtr4g 2805 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑆 = 𝑂) |
32 | 31 | fveq2d 6757 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
33 | 21, 32 | pm2.61dan 813 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 Vcvv 3423 ⊆ wss 3884 ∅c0 4254 〈cop 4564 class class class wbr 5070 × cxp 5577 ‘cfv 6415 (class class class)co 7252 0cc0 10777 1c1 10778 < clt 10915 ℕcn 11878 ;cdc 12341 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 lecple 16870 mPwSer cmps 20992 ordPwSer copws 20996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-ltxr 10920 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-dec 12342 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ple 16883 df-psr 20997 df-opsr 21001 |
This theorem is referenced by: opsrbasOLD 21138 opsrplusgOLD 21140 opsrmulrOLD 21142 opsrvscaOLD 21144 opsrscaOLD 21146 |
Copyright terms: Public domain | W3C validator |