MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbwe Structured version   Visualization version   GIF version

Theorem ltbwe 22000
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
ltbwe.w (𝜑𝑇 We 𝐼)
Assertion
Ref Expression
ltbwe (𝜑𝐶 We 𝐷)
Distinct variable groups:   ,𝐼   𝜑,
Allowed substitution hints:   𝐶()   𝐷()   𝑇()   𝑉()   𝑊()

Proof of Theorem ltbwe
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2 breq1 5122 . . . . . 6 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0))
32cbvrabv 3426 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} = {𝑥 ∈ (ℕ0m 𝐼) ∣ 𝑥 finSupp 0}
4 ltbwe.w . . . . 5 (𝜑𝑇 We 𝐼)
5 nn0uz 12892 . . . . . 6 0 = (ℤ‘0)
6 ltweuz 13977 . . . . . . 7 < We (ℤ‘0)
7 weeq2 5642 . . . . . . 7 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
86, 7mpbiri 258 . . . . . 6 (ℕ0 = (ℤ‘0) → < We ℕ0)
95, 8mp1i 13 . . . . 5 (𝜑 → < We ℕ0)
10 0nn0 12514 . . . . . 6 0 ∈ ℕ0
11 ne0i 4316 . . . . . 6 (0 ∈ ℕ0 → ℕ0 ≠ ∅)
1210, 11mp1i 13 . . . . 5 (𝜑 → ℕ0 ≠ ∅)
13 eqid 2735 . . . . 5 OrdIso(𝑇, 𝐼) = OrdIso(𝑇, 𝐼)
14 0z 12597 . . . . . . 7 0 ∈ ℤ
15 hashgval2 14394 . . . . . . 7 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1614, 15om2uzoi 13971 . . . . . 6 (♯ ↾ ω) = OrdIso( < , (ℤ‘0))
17 oieq2 9525 . . . . . . 7 (ℕ0 = (ℤ‘0) → OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0)))
185, 17ax-mp 5 . . . . . 6 OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0))
1916, 18eqtr4i 2761 . . . . 5 (♯ ↾ ω) = OrdIso( < , ℕ0)
20 peano1 7882 . . . . . . 7 ∅ ∈ ω
21 fvres 6894 . . . . . . 7 (∅ ∈ ω → ((♯ ↾ ω)‘∅) = (♯‘∅))
2220, 21ax-mp 5 . . . . . 6 ((♯ ↾ ω)‘∅) = (♯‘∅)
23 hash0 14383 . . . . . 6 (♯‘∅) = 0
2422, 23eqtr2i 2759 . . . . 5 0 = ((♯ ↾ ω)‘∅)
251, 3, 4, 9, 12, 13, 19, 24wemapwe 9709 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
26 ltbval.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
27 elmapfun 8878 . . . . . . . . . 10 ( ∈ (ℕ0m 𝐼) → Fun )
2827adantl 481 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → Fun )
29 simpr 484 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → ∈ (ℕ0m 𝐼))
30 c0ex 11227 . . . . . . . . . 10 0 ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → 0 ∈ V)
32 funisfsupp 9377 . . . . . . . . 9 ((Fun ∈ (ℕ0m 𝐼) ∧ 0 ∈ V) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
3328, 29, 31, 32syl3anc 1373 . . . . . . . 8 ((𝜑 ∈ (ℕ0m 𝐼)) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
34 ltbval.i . . . . . . . . 9 (𝜑𝐼𝑉)
35 elmapi 8861 . . . . . . . . 9 ( ∈ (ℕ0m 𝐼) → :𝐼⟶ℕ0)
36 fcdmnn0supp 12556 . . . . . . . . . 10 ((𝐼𝑉:𝐼⟶ℕ0) → ( supp 0) = ( “ ℕ))
3736eleq1d 2819 . . . . . . . . 9 ((𝐼𝑉:𝐼⟶ℕ0) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3834, 35, 37syl2an 596 . . . . . . . 8 ((𝜑 ∈ (ℕ0m 𝐼)) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3933, 38bitr2d 280 . . . . . . 7 ((𝜑 ∈ (ℕ0m 𝐼)) → (( “ ℕ) ∈ Fin ↔ finSupp 0))
4039rabbidva 3422 . . . . . 6 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
4126, 40eqtrid 2782 . . . . 5 (𝜑𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
42 weeq2 5642 . . . . 5 (𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0} → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0}))
4341, 42syl 17 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0}))
4425, 43mpbird 257 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷)
45 weinxp 5739 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
4644, 45sylib 218 . 2 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
47 ltbval.c . . . . 5 𝐶 = (𝑇 <bag 𝐼)
48 ltbval.t . . . . 5 (𝜑𝑇𝑊)
4947, 26, 34, 48ltbval 21999 . . . 4 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
50 df-xp 5660 . . . . . . 7 (𝐷 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)}
51 vex 3463 . . . . . . . . 9 𝑥 ∈ V
52 vex 3463 . . . . . . . . 9 𝑦 ∈ V
5351, 52prss 4796 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
5453opabbii 5186 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷}
5550, 54eqtr2i 2759 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} = (𝐷 × 𝐷)
5655ineq1i 4191 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))})
57 inopab 5808 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
58 incom 4184 . . . . 5 ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
5956, 57, 583eqtr3i 2766 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
6049, 59eqtrdi 2786 . . 3 (𝜑𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)))
61 weeq1 5641 . . 3 (𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6260, 61syl 17 . 2 (𝜑 → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6346, 62mpbird 257 1 (𝜑𝐶 We 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  wss 3926  c0 4308  {cpr 4603   class class class wbr 5119  {copab 5181   We wwe 5605   × cxp 5652  ccnv 5653  cres 5656  cima 5657  Fun wfun 6524  wf 6526  cfv 6530  (class class class)co 7403  ωcom 7859   supp csupp 8157  m cmap 8838  Fincfn 8957   finSupp cfsupp 9371  OrdIsocoi 9521  0cc0 11127   < clt 11267  cn 12238  0cn0 12499  cuz 12850  chash 14346   <bag cltb 21865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-seqom 8460  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-oexp 8484  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-cnf 9674  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-fz 13523  df-hash 14347  df-ltbag 21870
This theorem is referenced by:  opsrtoslem2  22012
  Copyright terms: Public domain W3C validator