Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
2 | | breq1 5035 |
. . . . . 6
⊢ (ℎ = 𝑥 → (ℎ finSupp 0 ↔ 𝑥 finSupp 0)) |
3 | 2 | cbvrabv 3404 |
. . . . 5
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} =
{𝑥 ∈
(ℕ0 ↑m 𝐼) ∣ 𝑥 finSupp 0} |
4 | | ltbwe.w |
. . . . 5
⊢ (𝜑 → 𝑇 We 𝐼) |
5 | | nn0uz 12320 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
6 | | ltweuz 13378 |
. . . . . . 7
⊢ < We
(ℤ≥‘0) |
7 | | weeq2 5513 |
. . . . . . 7
⊢
(ℕ0 = (ℤ≥‘0) → ( < We
ℕ0 ↔ < We
(ℤ≥‘0))) |
8 | 6, 7 | mpbiri 261 |
. . . . . 6
⊢
(ℕ0 = (ℤ≥‘0) → < We
ℕ0) |
9 | 5, 8 | mp1i 13 |
. . . . 5
⊢ (𝜑 → < We
ℕ0) |
10 | | 0nn0 11949 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
11 | | ne0i 4233 |
. . . . . 6
⊢ (0 ∈
ℕ0 → ℕ0 ≠ ∅) |
12 | 10, 11 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ℕ0 ≠
∅) |
13 | | eqid 2758 |
. . . . 5
⊢
OrdIso(𝑇, 𝐼) = OrdIso(𝑇, 𝐼) |
14 | | 0z 12031 |
. . . . . . 7
⊢ 0 ∈
ℤ |
15 | | hashgval2 13789 |
. . . . . . 7
⊢ (♯
↾ ω) = (rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) |
16 | 14, 15 | om2uzoi 13372 |
. . . . . 6
⊢ (♯
↾ ω) = OrdIso( < ,
(ℤ≥‘0)) |
17 | | oieq2 9010 |
. . . . . . 7
⊢
(ℕ0 = (ℤ≥‘0) → OrdIso(
< , ℕ0) = OrdIso( < ,
(ℤ≥‘0))) |
18 | 5, 17 | ax-mp 5 |
. . . . . 6
⊢ OrdIso(
< , ℕ0) = OrdIso( < ,
(ℤ≥‘0)) |
19 | 16, 18 | eqtr4i 2784 |
. . . . 5
⊢ (♯
↾ ω) = OrdIso( < , ℕ0) |
20 | | peano1 7600 |
. . . . . . 7
⊢ ∅
∈ ω |
21 | | fvres 6677 |
. . . . . . 7
⊢ (∅
∈ ω → ((♯ ↾ ω)‘∅) =
(♯‘∅)) |
22 | 20, 21 | ax-mp 5 |
. . . . . 6
⊢ ((♯
↾ ω)‘∅) = (♯‘∅) |
23 | | hash0 13778 |
. . . . . 6
⊢
(♯‘∅) = 0 |
24 | 22, 23 | eqtr2i 2782 |
. . . . 5
⊢ 0 =
((♯ ↾ ω)‘∅) |
25 | 1, 3, 4, 9, 12, 13, 19, 24 | wemapwe 9193 |
. . . 4
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
26 | | ltbval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
27 | | elmapfun 8448 |
. . . . . . . . . 10
⊢ (ℎ ∈ (ℕ0
↑m 𝐼)
→ Fun ℎ) |
28 | 27 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m 𝐼))
→ Fun ℎ) |
29 | | simpr 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m 𝐼))
→ ℎ ∈
(ℕ0 ↑m 𝐼)) |
30 | | c0ex 10673 |
. . . . . . . . . 10
⊢ 0 ∈
V |
31 | 30 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m 𝐼))
→ 0 ∈ V) |
32 | | funisfsupp 8871 |
. . . . . . . . 9
⊢ ((Fun
ℎ ∧ ℎ ∈ (ℕ0
↑m 𝐼) ∧
0 ∈ V) → (ℎ
finSupp 0 ↔ (ℎ supp 0)
∈ Fin)) |
33 | 28, 29, 31, 32 | syl3anc 1368 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m 𝐼))
→ (ℎ finSupp 0 ↔
(ℎ supp 0) ∈
Fin)) |
34 | | ltbval.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
35 | | elmapi 8438 |
. . . . . . . . 9
⊢ (ℎ ∈ (ℕ0
↑m 𝐼)
→ ℎ:𝐼⟶ℕ0) |
36 | | frnnn0supp 11990 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ ℎ:𝐼⟶ℕ0) → (ℎ supp 0) = (◡ℎ “ ℕ)) |
37 | 36 | eleq1d 2836 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ ℎ:𝐼⟶ℕ0) → ((ℎ supp 0) ∈ Fin ↔ (◡ℎ “ ℕ) ∈
Fin)) |
38 | 34, 35, 37 | syl2an 598 |
. . . . . . . 8
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m 𝐼))
→ ((ℎ supp 0) ∈
Fin ↔ (◡ℎ “ ℕ) ∈
Fin)) |
39 | 33, 38 | bitr2d 283 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ (ℕ0
↑m 𝐼))
→ ((◡ℎ “ ℕ) ∈ Fin ↔ ℎ finSupp 0)) |
40 | 39 | rabbidva 3390 |
. . . . . 6
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
41 | 26, 40 | syl5eq 2805 |
. . . . 5
⊢ (𝜑 → 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0}) |
42 | | weeq2 5513 |
. . . . 5
⊢ (𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} →
({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We 𝐷 ↔ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
43 | 41, 42 | syl 17 |
. . . 4
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We 𝐷 ↔ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0})) |
44 | 25, 43 | mpbird 260 |
. . 3
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We 𝐷) |
45 | | weinxp 5605 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} We 𝐷 ↔ ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷) |
46 | 44, 45 | sylib 221 |
. 2
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷) |
47 | | ltbval.c |
. . . . 5
⊢ 𝐶 = (𝑇 <bag 𝐼) |
48 | | ltbval.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ 𝑊) |
49 | 47, 26, 34, 48 | ltbval 20803 |
. . . 4
⊢ (𝜑 → 𝐶 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
50 | | df-xp 5530 |
. . . . . . 7
⊢ (𝐷 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)} |
51 | | vex 3413 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
52 | | vex 3413 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
53 | 51, 52 | prss 4710 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷) |
54 | 53 | opabbii 5099 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)} = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ⊆ 𝐷} |
55 | 50, 54 | eqtr2i 2782 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ⊆ 𝐷} = (𝐷 × 𝐷) |
56 | 55 | ineq1i 4113 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}) = ((𝐷 × 𝐷) ∩ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}) |
57 | | inopab 5670 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}) = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} |
58 | | incom 4106 |
. . . . 5
⊢ ((𝐷 × 𝐷) ∩ {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))}) = ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) |
59 | 56, 57, 58 | 3eqtr3i 2789 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))} = ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) |
60 | 49, 59 | eqtrdi 2809 |
. . 3
⊢ (𝜑 → 𝐶 = ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷))) |
61 | | weeq1 5512 |
. . 3
⊢ (𝐶 = ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) → (𝐶 We 𝐷 ↔ ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)) |
62 | 60, 61 | syl 17 |
. 2
⊢ (𝜑 → (𝐶 We 𝐷 ↔ ({〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐼 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐼 (𝑧𝑇𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)) |
63 | 46, 62 | mpbird 260 |
1
⊢ (𝜑 → 𝐶 We 𝐷) |