MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbwe Structured version   Visualization version   GIF version

Theorem ltbwe 22079
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
ltbwe.w (𝜑𝑇 We 𝐼)
Assertion
Ref Expression
ltbwe (𝜑𝐶 We 𝐷)
Distinct variable groups:   ,𝐼   𝜑,
Allowed substitution hints:   𝐶()   𝐷()   𝑇()   𝑉()   𝑊()

Proof of Theorem ltbwe
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2 breq1 5150 . . . . . 6 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0))
32cbvrabv 3443 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} = {𝑥 ∈ (ℕ0m 𝐼) ∣ 𝑥 finSupp 0}
4 ltbwe.w . . . . 5 (𝜑𝑇 We 𝐼)
5 nn0uz 12917 . . . . . 6 0 = (ℤ‘0)
6 ltweuz 13998 . . . . . . 7 < We (ℤ‘0)
7 weeq2 5676 . . . . . . 7 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
86, 7mpbiri 258 . . . . . 6 (ℕ0 = (ℤ‘0) → < We ℕ0)
95, 8mp1i 13 . . . . 5 (𝜑 → < We ℕ0)
10 0nn0 12538 . . . . . 6 0 ∈ ℕ0
11 ne0i 4346 . . . . . 6 (0 ∈ ℕ0 → ℕ0 ≠ ∅)
1210, 11mp1i 13 . . . . 5 (𝜑 → ℕ0 ≠ ∅)
13 eqid 2734 . . . . 5 OrdIso(𝑇, 𝐼) = OrdIso(𝑇, 𝐼)
14 0z 12621 . . . . . . 7 0 ∈ ℤ
15 hashgval2 14413 . . . . . . 7 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1614, 15om2uzoi 13992 . . . . . 6 (♯ ↾ ω) = OrdIso( < , (ℤ‘0))
17 oieq2 9550 . . . . . . 7 (ℕ0 = (ℤ‘0) → OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0)))
185, 17ax-mp 5 . . . . . 6 OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0))
1916, 18eqtr4i 2765 . . . . 5 (♯ ↾ ω) = OrdIso( < , ℕ0)
20 peano1 7910 . . . . . . 7 ∅ ∈ ω
21 fvres 6925 . . . . . . 7 (∅ ∈ ω → ((♯ ↾ ω)‘∅) = (♯‘∅))
2220, 21ax-mp 5 . . . . . 6 ((♯ ↾ ω)‘∅) = (♯‘∅)
23 hash0 14402 . . . . . 6 (♯‘∅) = 0
2422, 23eqtr2i 2763 . . . . 5 0 = ((♯ ↾ ω)‘∅)
251, 3, 4, 9, 12, 13, 19, 24wemapwe 9734 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
26 ltbval.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
27 elmapfun 8904 . . . . . . . . . 10 ( ∈ (ℕ0m 𝐼) → Fun )
2827adantl 481 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → Fun )
29 simpr 484 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → ∈ (ℕ0m 𝐼))
30 c0ex 11252 . . . . . . . . . 10 0 ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → 0 ∈ V)
32 funisfsupp 9404 . . . . . . . . 9 ((Fun ∈ (ℕ0m 𝐼) ∧ 0 ∈ V) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
3328, 29, 31, 32syl3anc 1370 . . . . . . . 8 ((𝜑 ∈ (ℕ0m 𝐼)) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
34 ltbval.i . . . . . . . . 9 (𝜑𝐼𝑉)
35 elmapi 8887 . . . . . . . . 9 ( ∈ (ℕ0m 𝐼) → :𝐼⟶ℕ0)
36 fcdmnn0supp 12580 . . . . . . . . . 10 ((𝐼𝑉:𝐼⟶ℕ0) → ( supp 0) = ( “ ℕ))
3736eleq1d 2823 . . . . . . . . 9 ((𝐼𝑉:𝐼⟶ℕ0) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3834, 35, 37syl2an 596 . . . . . . . 8 ((𝜑 ∈ (ℕ0m 𝐼)) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3933, 38bitr2d 280 . . . . . . 7 ((𝜑 ∈ (ℕ0m 𝐼)) → (( “ ℕ) ∈ Fin ↔ finSupp 0))
4039rabbidva 3439 . . . . . 6 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
4126, 40eqtrid 2786 . . . . 5 (𝜑𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
42 weeq2 5676 . . . . 5 (𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0} → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0}))
4341, 42syl 17 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0}))
4425, 43mpbird 257 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷)
45 weinxp 5772 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
4644, 45sylib 218 . 2 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
47 ltbval.c . . . . 5 𝐶 = (𝑇 <bag 𝐼)
48 ltbval.t . . . . 5 (𝜑𝑇𝑊)
4947, 26, 34, 48ltbval 22078 . . . 4 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
50 df-xp 5694 . . . . . . 7 (𝐷 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)}
51 vex 3481 . . . . . . . . 9 𝑥 ∈ V
52 vex 3481 . . . . . . . . 9 𝑦 ∈ V
5351, 52prss 4824 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
5453opabbii 5214 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷}
5550, 54eqtr2i 2763 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} = (𝐷 × 𝐷)
5655ineq1i 4223 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))})
57 inopab 5841 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
58 incom 4216 . . . . 5 ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
5956, 57, 583eqtr3i 2770 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
6049, 59eqtrdi 2790 . . 3 (𝜑𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)))
61 weeq1 5675 . . 3 (𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6260, 61syl 17 . 2 (𝜑 → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6346, 62mpbird 257 1 (𝜑𝐶 We 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  cin 3961  wss 3962  c0 4338  {cpr 4632   class class class wbr 5147  {copab 5209   We wwe 5639   × cxp 5686  ccnv 5687  cres 5690  cima 5691  Fun wfun 6556  wf 6558  cfv 6562  (class class class)co 7430  ωcom 7886   supp csupp 8183  m cmap 8864  Fincfn 8983   finSupp cfsupp 9398  OrdIsocoi 9546  0cc0 11152   < clt 11292  cn 12263  0cn0 12523  cuz 12875  chash 14365   <bag cltb 21944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-seqom 8486  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-oexp 8510  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-cnf 9699  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366  df-ltbag 21949
This theorem is referenced by:  opsrtoslem2  22097
  Copyright terms: Public domain W3C validator