MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltbwe Structured version   Visualization version   GIF version

Theorem ltbwe 21967
Description: The finite bag order is a well-order, given a well-order of the index set. (Contributed by Mario Carneiro, 2-Jun-2015.)
Hypotheses
Ref Expression
ltbval.c 𝐶 = (𝑇 <bag 𝐼)
ltbval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
ltbval.i (𝜑𝐼𝑉)
ltbval.t (𝜑𝑇𝑊)
ltbwe.w (𝜑𝑇 We 𝐼)
Assertion
Ref Expression
ltbwe (𝜑𝐶 We 𝐷)
Distinct variable groups:   ,𝐼   𝜑,
Allowed substitution hints:   𝐶()   𝐷()   𝑇()   𝑉()   𝑊()

Proof of Theorem ltbwe
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
2 breq1 5098 . . . . . 6 ( = 𝑥 → ( finSupp 0 ↔ 𝑥 finSupp 0))
32cbvrabv 3407 . . . . 5 { ∈ (ℕ0m 𝐼) ∣ finSupp 0} = {𝑥 ∈ (ℕ0m 𝐼) ∣ 𝑥 finSupp 0}
4 ltbwe.w . . . . 5 (𝜑𝑇 We 𝐼)
5 nn0uz 12795 . . . . . 6 0 = (ℤ‘0)
6 ltweuz 13886 . . . . . . 7 < We (ℤ‘0)
7 weeq2 5611 . . . . . . 7 (ℕ0 = (ℤ‘0) → ( < We ℕ0 ↔ < We (ℤ‘0)))
86, 7mpbiri 258 . . . . . 6 (ℕ0 = (ℤ‘0) → < We ℕ0)
95, 8mp1i 13 . . . . 5 (𝜑 → < We ℕ0)
10 0nn0 12417 . . . . . 6 0 ∈ ℕ0
11 ne0i 4294 . . . . . 6 (0 ∈ ℕ0 → ℕ0 ≠ ∅)
1210, 11mp1i 13 . . . . 5 (𝜑 → ℕ0 ≠ ∅)
13 eqid 2729 . . . . 5 OrdIso(𝑇, 𝐼) = OrdIso(𝑇, 𝐼)
14 0z 12500 . . . . . . 7 0 ∈ ℤ
15 hashgval2 14303 . . . . . . 7 (♯ ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
1614, 15om2uzoi 13880 . . . . . 6 (♯ ↾ ω) = OrdIso( < , (ℤ‘0))
17 oieq2 9424 . . . . . . 7 (ℕ0 = (ℤ‘0) → OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0)))
185, 17ax-mp 5 . . . . . 6 OrdIso( < , ℕ0) = OrdIso( < , (ℤ‘0))
1916, 18eqtr4i 2755 . . . . 5 (♯ ↾ ω) = OrdIso( < , ℕ0)
20 peano1 7829 . . . . . . 7 ∅ ∈ ω
21 fvres 6845 . . . . . . 7 (∅ ∈ ω → ((♯ ↾ ω)‘∅) = (♯‘∅))
2220, 21ax-mp 5 . . . . . 6 ((♯ ↾ ω)‘∅) = (♯‘∅)
23 hash0 14292 . . . . . 6 (♯‘∅) = 0
2422, 23eqtr2i 2753 . . . . 5 0 = ((♯ ↾ ω)‘∅)
251, 3, 4, 9, 12, 13, 19, 24wemapwe 9612 . . . 4 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
26 ltbval.d . . . . . 6 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
27 elmapfun 8800 . . . . . . . . . 10 ( ∈ (ℕ0m 𝐼) → Fun )
2827adantl 481 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → Fun )
29 simpr 484 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → ∈ (ℕ0m 𝐼))
30 c0ex 11128 . . . . . . . . . 10 0 ∈ V
3130a1i 11 . . . . . . . . 9 ((𝜑 ∈ (ℕ0m 𝐼)) → 0 ∈ V)
32 funisfsupp 9276 . . . . . . . . 9 ((Fun ∈ (ℕ0m 𝐼) ∧ 0 ∈ V) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
3328, 29, 31, 32syl3anc 1373 . . . . . . . 8 ((𝜑 ∈ (ℕ0m 𝐼)) → ( finSupp 0 ↔ ( supp 0) ∈ Fin))
34 ltbval.i . . . . . . . . 9 (𝜑𝐼𝑉)
35 elmapi 8783 . . . . . . . . 9 ( ∈ (ℕ0m 𝐼) → :𝐼⟶ℕ0)
36 fcdmnn0supp 12459 . . . . . . . . . 10 ((𝐼𝑉:𝐼⟶ℕ0) → ( supp 0) = ( “ ℕ))
3736eleq1d 2813 . . . . . . . . 9 ((𝐼𝑉:𝐼⟶ℕ0) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3834, 35, 37syl2an 596 . . . . . . . 8 ((𝜑 ∈ (ℕ0m 𝐼)) → (( supp 0) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
3933, 38bitr2d 280 . . . . . . 7 ((𝜑 ∈ (ℕ0m 𝐼)) → (( “ ℕ) ∈ Fin ↔ finSupp 0))
4039rabbidva 3403 . . . . . 6 (𝜑 → { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
4126, 40eqtrid 2776 . . . . 5 (𝜑𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0})
42 weeq2 5611 . . . . 5 (𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0} → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0}))
4341, 42syl 17 . . . 4 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We { ∈ (ℕ0m 𝐼) ∣ finSupp 0}))
4425, 43mpbird 257 . . 3 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷)
45 weinxp 5708 . . 3 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
4644, 45sylib 218 . 2 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷)
47 ltbval.c . . . . 5 𝐶 = (𝑇 <bag 𝐼)
48 ltbval.t . . . . 5 (𝜑𝑇𝑊)
4947, 26, 34, 48ltbval 21966 . . . 4 (𝜑𝐶 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
50 df-xp 5629 . . . . . . 7 (𝐷 × 𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)}
51 vex 3442 . . . . . . . . 9 𝑥 ∈ V
52 vex 3442 . . . . . . . . 9 𝑦 ∈ V
5351, 52prss 4774 . . . . . . . 8 ((𝑥𝐷𝑦𝐷) ↔ {𝑥, 𝑦} ⊆ 𝐷)
5453opabbii 5162 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐷𝑦𝐷)} = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷}
5550, 54eqtr2i 2753 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} = (𝐷 × 𝐷)
5655ineq1i 4169 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))})
57 inopab 5776 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ⊆ 𝐷} ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))}
58 incom 4162 . . . . 5 ((𝐷 × 𝐷) ∩ {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))}) = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
5956, 57, 583eqtr3i 2760 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐷 ∧ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤))))} = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷))
6049, 59eqtrdi 2780 . . 3 (𝜑𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)))
61 weeq1 5610 . . 3 (𝐶 = ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6260, 61syl 17 . 2 (𝜑 → (𝐶 We 𝐷 ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐼 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐼 (𝑧𝑇𝑤 → (𝑥𝑤) = (𝑦𝑤)))} ∩ (𝐷 × 𝐷)) We 𝐷))
6346, 62mpbird 257 1 (𝜑𝐶 We 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  cin 3904  wss 3905  c0 4286  {cpr 4581   class class class wbr 5095  {copab 5157   We wwe 5575   × cxp 5621  ccnv 5622  cres 5625  cima 5626  Fun wfun 6480  wf 6482  cfv 6486  (class class class)co 7353  ωcom 7806   supp csupp 8100  m cmap 8760  Fincfn 8879   finSupp cfsupp 9270  OrdIsocoi 9420  0cc0 11028   < clt 11168  cn 12146  0cn0 12402  cuz 12753  chash 14255   <bag cltb 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-seqom 8377  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-oexp 8401  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-cnf 9577  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-ltbag 21837
This theorem is referenced by:  opsrtoslem2  21979
  Copyright terms: Public domain W3C validator