| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psr1val | Structured version Visualization version GIF version | ||
| Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| psr1val.1 | ⊢ 𝑆 = (PwSer1‘𝑅) |
| Ref | Expression |
|---|---|
| psr1val | ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psr1val.1 | . 2 ⊢ 𝑆 = (PwSer1‘𝑅) | |
| 2 | oveq2 7354 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o ordPwSer 𝑟) = (1o ordPwSer 𝑅)) | |
| 3 | 2 | fveq1d 6824 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o ordPwSer 𝑟)‘∅) = ((1o ordPwSer 𝑅)‘∅)) |
| 4 | df-psr1 22090 | . . . 4 ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅)) | |
| 5 | fvex 6835 | . . . 4 ⊢ ((1o ordPwSer 𝑅)‘∅) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6929 | . . 3 ⊢ (𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
| 7 | 0fv 6863 | . . . . 5 ⊢ (∅‘∅) = ∅ | |
| 8 | 7 | eqcomi 2740 | . . . 4 ⊢ ∅ = (∅‘∅) |
| 9 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
| 10 | reldmopsr 21978 | . . . . . 6 ⊢ Rel dom ordPwSer | |
| 11 | 10 | ovprc2 7386 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o ordPwSer 𝑅) = ∅) |
| 12 | 11 | fveq1d 6824 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((1o ordPwSer 𝑅)‘∅) = (∅‘∅)) |
| 13 | 8, 9, 12 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
| 14 | 6, 13 | pm2.61i 182 | . 2 ⊢ (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅) |
| 15 | 1, 14 | eqtri 2754 | 1 ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 1oc1o 8378 ordPwSer copws 21843 PwSer1cps1 22085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-opsr 21848 df-psr1 22090 |
| This theorem is referenced by: psr1crng 22097 psr1assa 22098 psr1tos 22099 psr1bas2 22100 vr1cl2 22103 ply1lss 22107 ply1subrg 22108 psr1plusg 22131 psr1vsca 22132 psr1mulr 22133 psr1ring 22157 psr1lmod 22159 psr1sca 22160 |
| Copyright terms: Public domain | W3C validator |