| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psr1val | Structured version Visualization version GIF version | ||
| Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| psr1val.1 | ⊢ 𝑆 = (PwSer1‘𝑅) |
| Ref | Expression |
|---|---|
| psr1val | ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psr1val.1 | . 2 ⊢ 𝑆 = (PwSer1‘𝑅) | |
| 2 | oveq2 7413 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o ordPwSer 𝑟) = (1o ordPwSer 𝑅)) | |
| 3 | 2 | fveq1d 6878 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o ordPwSer 𝑟)‘∅) = ((1o ordPwSer 𝑅)‘∅)) |
| 4 | df-psr1 22115 | . . . 4 ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅)) | |
| 5 | fvex 6889 | . . . 4 ⊢ ((1o ordPwSer 𝑅)‘∅) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6986 | . . 3 ⊢ (𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
| 7 | 0fv 6920 | . . . . 5 ⊢ (∅‘∅) = ∅ | |
| 8 | 7 | eqcomi 2744 | . . . 4 ⊢ ∅ = (∅‘∅) |
| 9 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
| 10 | reldmopsr 22003 | . . . . . 6 ⊢ Rel dom ordPwSer | |
| 11 | 10 | ovprc2 7445 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o ordPwSer 𝑅) = ∅) |
| 12 | 11 | fveq1d 6878 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((1o ordPwSer 𝑅)‘∅) = (∅‘∅)) |
| 13 | 8, 9, 12 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
| 14 | 6, 13 | pm2.61i 182 | . 2 ⊢ (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅) |
| 15 | 1, 14 | eqtri 2758 | 1 ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ‘cfv 6531 (class class class)co 7405 1oc1o 8473 ordPwSer copws 21868 PwSer1cps1 22110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-opsr 21873 df-psr1 22115 |
| This theorem is referenced by: psr1crng 22122 psr1assa 22123 psr1tos 22124 psr1bas2 22125 vr1cl2 22128 ply1lss 22132 ply1subrg 22133 psr1plusg 22156 psr1vsca 22157 psr1mulr 22158 psr1ring 22182 psr1lmod 22184 psr1sca 22185 |
| Copyright terms: Public domain | W3C validator |