![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1val | Structured version Visualization version GIF version |
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
psr1val.1 | ⊢ 𝑆 = (PwSer1‘𝑅) |
Ref | Expression |
---|---|
psr1val | ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psr1val.1 | . 2 ⊢ 𝑆 = (PwSer1‘𝑅) | |
2 | oveq2 7417 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o ordPwSer 𝑟) = (1o ordPwSer 𝑅)) | |
3 | 2 | fveq1d 6894 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o ordPwSer 𝑟)‘∅) = ((1o ordPwSer 𝑅)‘∅)) |
4 | df-psr1 21704 | . . . 4 ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅)) | |
5 | fvex 6905 | . . . 4 ⊢ ((1o ordPwSer 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 6999 | . . 3 ⊢ (𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
7 | 0fv 6936 | . . . . 5 ⊢ (∅‘∅) = ∅ | |
8 | 7 | eqcomi 2742 | . . . 4 ⊢ ∅ = (∅‘∅) |
9 | fvprc 6884 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
10 | reldmopsr 21600 | . . . . . 6 ⊢ Rel dom ordPwSer | |
11 | 10 | ovprc2 7449 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o ordPwSer 𝑅) = ∅) |
12 | 11 | fveq1d 6894 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((1o ordPwSer 𝑅)‘∅) = (∅‘∅)) |
13 | 8, 9, 12 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
14 | 6, 13 | pm2.61i 182 | . 2 ⊢ (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅) |
15 | 1, 14 | eqtri 2761 | 1 ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 ‘cfv 6544 (class class class)co 7409 1oc1o 8459 ordPwSer copws 21461 PwSer1cps1 21699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-opsr 21466 df-psr1 21704 |
This theorem is referenced by: psr1crng 21711 psr1assa 21712 psr1tos 21713 psr1bas2 21714 vr1cl2 21717 ply1lss 21720 ply1subrg 21721 psr1plusg 21744 psr1vsca 21745 psr1mulr 21746 psr1ring 21769 psr1lmod 21771 psr1sca 21772 |
Copyright terms: Public domain | W3C validator |