MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1val Structured version   Visualization version   GIF version

Theorem psr1val 21357
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
psr1val.1 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
psr1val 𝑆 = ((1o ordPwSer 𝑅)‘∅)

Proof of Theorem psr1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 psr1val.1 . 2 𝑆 = (PwSer1𝑅)
2 oveq2 7283 . . . . 5 (𝑟 = 𝑅 → (1o ordPwSer 𝑟) = (1o ordPwSer 𝑅))
32fveq1d 6776 . . . 4 (𝑟 = 𝑅 → ((1o ordPwSer 𝑟)‘∅) = ((1o ordPwSer 𝑅)‘∅))
4 df-psr1 21351 . . . 4 PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅))
5 fvex 6787 . . . 4 ((1o ordPwSer 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 6875 . . 3 (𝑅 ∈ V → (PwSer1𝑅) = ((1o ordPwSer 𝑅)‘∅))
7 0fv 6813 . . . . 5 (∅‘∅) = ∅
87eqcomi 2747 . . . 4 ∅ = (∅‘∅)
9 fvprc 6766 . . . 4 𝑅 ∈ V → (PwSer1𝑅) = ∅)
10 reldmopsr 21246 . . . . . 6 Rel dom ordPwSer
1110ovprc2 7315 . . . . 5 𝑅 ∈ V → (1o ordPwSer 𝑅) = ∅)
1211fveq1d 6776 . . . 4 𝑅 ∈ V → ((1o ordPwSer 𝑅)‘∅) = (∅‘∅))
138, 9, 123eqtr4a 2804 . . 3 𝑅 ∈ V → (PwSer1𝑅) = ((1o ordPwSer 𝑅)‘∅))
146, 13pm2.61i 182 . 2 (PwSer1𝑅) = ((1o ordPwSer 𝑅)‘∅)
151, 14eqtri 2766 1 𝑆 = ((1o ordPwSer 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  cfv 6433  (class class class)co 7275  1oc1o 8290   ordPwSer copws 21111  PwSer1cps1 21346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-opsr 21116  df-psr1 21351
This theorem is referenced by:  psr1crng  21358  psr1assa  21359  psr1tos  21360  psr1bas2  21361  vr1cl2  21364  ply1lss  21367  ply1subrg  21368  psr1plusg  21393  psr1vsca  21394  psr1mulr  21395  psr1ring  21418  psr1lmod  21420  psr1sca  21421
  Copyright terms: Public domain W3C validator