MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr1val Structured version   Visualization version   GIF version

Theorem psr1val 22077
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypothesis
Ref Expression
psr1val.1 𝑆 = (PwSer1𝑅)
Assertion
Ref Expression
psr1val 𝑆 = ((1o ordPwSer 𝑅)‘∅)

Proof of Theorem psr1val
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 psr1val.1 . 2 𝑆 = (PwSer1𝑅)
2 oveq2 7398 . . . . 5 (𝑟 = 𝑅 → (1o ordPwSer 𝑟) = (1o ordPwSer 𝑅))
32fveq1d 6863 . . . 4 (𝑟 = 𝑅 → ((1o ordPwSer 𝑟)‘∅) = ((1o ordPwSer 𝑅)‘∅))
4 df-psr1 22071 . . . 4 PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅))
5 fvex 6874 . . . 4 ((1o ordPwSer 𝑅)‘∅) ∈ V
63, 4, 5fvmpt 6971 . . 3 (𝑅 ∈ V → (PwSer1𝑅) = ((1o ordPwSer 𝑅)‘∅))
7 0fv 6905 . . . . 5 (∅‘∅) = ∅
87eqcomi 2739 . . . 4 ∅ = (∅‘∅)
9 fvprc 6853 . . . 4 𝑅 ∈ V → (PwSer1𝑅) = ∅)
10 reldmopsr 21959 . . . . . 6 Rel dom ordPwSer
1110ovprc2 7430 . . . . 5 𝑅 ∈ V → (1o ordPwSer 𝑅) = ∅)
1211fveq1d 6863 . . . 4 𝑅 ∈ V → ((1o ordPwSer 𝑅)‘∅) = (∅‘∅))
138, 9, 123eqtr4a 2791 . . 3 𝑅 ∈ V → (PwSer1𝑅) = ((1o ordPwSer 𝑅)‘∅))
146, 13pm2.61i 182 . 2 (PwSer1𝑅) = ((1o ordPwSer 𝑅)‘∅)
151, 14eqtri 2753 1 𝑆 = ((1o ordPwSer 𝑅)‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  cfv 6514  (class class class)co 7390  1oc1o 8430   ordPwSer copws 21824  PwSer1cps1 22066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-opsr 21829  df-psr1 22071
This theorem is referenced by:  psr1crng  22078  psr1assa  22079  psr1tos  22080  psr1bas2  22081  vr1cl2  22084  ply1lss  22088  ply1subrg  22089  psr1plusg  22112  psr1vsca  22113  psr1mulr  22114  psr1ring  22138  psr1lmod  22140  psr1sca  22141
  Copyright terms: Public domain W3C validator