![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1val | Structured version Visualization version GIF version |
Description: Value of the ring of univariate power series. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
psr1val.1 | ⊢ 𝑆 = (PwSer1‘𝑅) |
Ref | Expression |
---|---|
psr1val | ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psr1val.1 | . 2 ⊢ 𝑆 = (PwSer1‘𝑅) | |
2 | oveq2 7456 | . . . . 5 ⊢ (𝑟 = 𝑅 → (1o ordPwSer 𝑟) = (1o ordPwSer 𝑅)) | |
3 | 2 | fveq1d 6922 | . . . 4 ⊢ (𝑟 = 𝑅 → ((1o ordPwSer 𝑟)‘∅) = ((1o ordPwSer 𝑅)‘∅)) |
4 | df-psr1 22202 | . . . 4 ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅)) | |
5 | fvex 6933 | . . . 4 ⊢ ((1o ordPwSer 𝑅)‘∅) ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | . . 3 ⊢ (𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
7 | 0fv 6964 | . . . . 5 ⊢ (∅‘∅) = ∅ | |
8 | 7 | eqcomi 2749 | . . . 4 ⊢ ∅ = (∅‘∅) |
9 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ∅) | |
10 | reldmopsr 22086 | . . . . . 6 ⊢ Rel dom ordPwSer | |
11 | 10 | ovprc2 7488 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (1o ordPwSer 𝑅) = ∅) |
12 | 11 | fveq1d 6922 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ((1o ordPwSer 𝑅)‘∅) = (∅‘∅)) |
13 | 8, 9, 12 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑅 ∈ V → (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅)) |
14 | 6, 13 | pm2.61i 182 | . 2 ⊢ (PwSer1‘𝑅) = ((1o ordPwSer 𝑅)‘∅) |
15 | 1, 14 | eqtri 2768 | 1 ⊢ 𝑆 = ((1o ordPwSer 𝑅)‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 ordPwSer copws 21951 PwSer1cps1 22197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-opsr 21956 df-psr1 22202 |
This theorem is referenced by: psr1crng 22209 psr1assa 22210 psr1tos 22211 psr1bas2 22212 vr1cl2 22215 ply1lss 22219 ply1subrg 22220 psr1plusg 22243 psr1vsca 22244 psr1mulr 22245 psr1ring 22269 psr1lmod 22271 psr1sca 22272 |
Copyright terms: Public domain | W3C validator |