| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opsrbaslem | Structured version Visualization version GIF version | ||
| Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
| Ref | Expression |
|---|---|
| opsrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| opsrbas.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
| opsrbas.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
| opsrbaslem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| opsrbaslem.2 | ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
| Ref | Expression |
|---|---|
| opsrbaslem | ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrbaslem.1 | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | opsrbaslem.2 | . . . 4 ⊢ (𝐸‘ndx) ≠ (le‘ndx) | |
| 3 | 1, 2 | setsnid 17116 | . . 3 ⊢ (𝐸‘𝑆) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
| 4 | opsrbas.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | opsrbas.o | . . . . 5 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
| 6 | eqid 2731 | . . . . 5 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 7 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
| 8 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
| 9 | opsrbas.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼)) |
| 11 | 4, 5, 6, 7, 8, 10 | opsrval2 21981 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
| 12 | 11 | fveq2d 6826 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑂) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉))) |
| 13 | 3, 12 | eqtr4id 2785 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| 14 | 0fv 6863 | . . . . . . 7 ⊢ (∅‘𝑇) = ∅ | |
| 15 | 14 | eqcomi 2740 | . . . . . 6 ⊢ ∅ = (∅‘𝑇) |
| 16 | reldmpsr 21849 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 17 | 16 | ovprc 7384 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
| 18 | reldmopsr 21978 | . . . . . . . 8 ⊢ Rel dom ordPwSer | |
| 19 | 18 | ovprc 7384 | . . . . . . 7 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅) |
| 20 | 19 | fveq1d 6824 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇)) |
| 21 | 15, 17, 20 | 3eqtr4a 2792 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
| 22 | 21, 4, 5 | 3eqtr4g 2791 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = 𝑂) |
| 23 | 22 | fveq2d 6826 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| 24 | 23 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| 25 | 13, 24 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 〈cop 4582 × cxp 5614 ‘cfv 6481 (class class class)co 7346 sSet csts 17071 Slot cslot 17089 ndxcnx 17101 lecple 17165 mPwSer cmps 21839 ordPwSer copws 21843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-dec 12586 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ple 17178 df-psr 21844 df-opsr 21848 |
| This theorem is referenced by: opsrbas 21983 opsrplusg 21984 opsrmulr 21985 opsrvsca 21986 opsrsca 21987 |
| Copyright terms: Public domain | W3C validator |