![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrbaslem | Structured version Visualization version GIF version |
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) |
Ref | Expression |
---|---|
opsrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsrbas.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrbas.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
opsrbaslem.1 | ⊢ 𝐸 = Slot 𝑁 |
opsrbaslem.2 | ⊢ 𝑁 ∈ ℕ |
opsrbaslem.3 | ⊢ 𝑁 < ;10 |
Ref | Expression |
---|---|
opsrbaslem | ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbas.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | opsrbas.o | . . . . 5 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
3 | eqid 2799 | . . . . 5 ⊢ (le‘𝑂) = (le‘𝑂) | |
4 | simprl 788 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
5 | simprr 790 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
6 | opsrbas.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
7 | 6 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼)) |
8 | 1, 2, 3, 4, 5, 7 | opsrval2 19799 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
9 | 8 | fveq2d 6415 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑂) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉))) |
10 | opsrbaslem.1 | . . . . 5 ⊢ 𝐸 = Slot 𝑁 | |
11 | opsrbaslem.2 | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
12 | 10, 11 | ndxid 16210 | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) |
13 | 11 | nnrei 11322 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
14 | opsrbaslem.3 | . . . . . 6 ⊢ 𝑁 < ;10 | |
15 | 13, 14 | ltneii 10440 | . . . . 5 ⊢ 𝑁 ≠ ;10 |
16 | 10, 11 | ndxarg 16209 | . . . . . 6 ⊢ (𝐸‘ndx) = 𝑁 |
17 | plendx 16368 | . . . . . 6 ⊢ (le‘ndx) = ;10 | |
18 | 16, 17 | neeq12i 3037 | . . . . 5 ⊢ ((𝐸‘ndx) ≠ (le‘ndx) ↔ 𝑁 ≠ ;10) |
19 | 15, 18 | mpbir 223 | . . . 4 ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
20 | 12, 19 | setsnid 16240 | . . 3 ⊢ (𝐸‘𝑆) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
21 | 9, 20 | syl6reqr 2852 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
22 | 0fv 6451 | . . . . . . 7 ⊢ (∅‘𝑇) = ∅ | |
23 | 22 | eqcomi 2808 | . . . . . 6 ⊢ ∅ = (∅‘𝑇) |
24 | reldmpsr 19684 | . . . . . . 7 ⊢ Rel dom mPwSer | |
25 | 24 | ovprc 6915 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
26 | reldmopsr 19796 | . . . . . . . 8 ⊢ Rel dom ordPwSer | |
27 | 26 | ovprc 6915 | . . . . . . 7 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅) |
28 | 27 | fveq1d 6413 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇)) |
29 | 23, 25, 28 | 3eqtr4a 2859 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
30 | 29 | adantl 474 | . . . 4 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
31 | 30, 1, 2 | 3eqtr4g 2858 | . . 3 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑆 = 𝑂) |
32 | 31 | fveq2d 6415 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
33 | 21, 32 | pm2.61dan 848 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 Vcvv 3385 ⊆ wss 3769 ∅c0 4115 〈cop 4374 class class class wbr 4843 × cxp 5310 ‘cfv 6101 (class class class)co 6878 0cc0 10224 1c1 10225 < clt 10363 ℕcn 11312 ;cdc 11783 ndxcnx 16181 sSet csts 16182 Slot cslot 16183 lecple 16274 mPwSer cmps 19674 ordPwSer copws 19678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-pnf 10365 df-mnf 10366 df-ltxr 10368 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-dec 11784 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ple 16287 df-psr 19679 df-opsr 19683 |
This theorem is referenced by: opsrbas 19801 opsrplusg 19802 opsrmulr 19803 opsrvsca 19804 opsrsca 19805 |
Copyright terms: Public domain | W3C validator |