![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrbaslem | Structured version Visualization version GIF version |
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
Ref | Expression |
---|---|
opsrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsrbas.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrbas.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
opsrbaslem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
opsrbaslem.2 | ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
Ref | Expression |
---|---|
opsrbaslem | ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslem.1 | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | opsrbaslem.2 | . . . 4 ⊢ (𝐸‘ndx) ≠ (le‘ndx) | |
3 | 1, 2 | setsnid 17171 | . . 3 ⊢ (𝐸‘𝑆) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
4 | opsrbas.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | opsrbas.o | . . . . 5 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
6 | eqid 2727 | . . . . 5 ⊢ (le‘𝑂) = (le‘𝑂) | |
7 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
8 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
9 | opsrbas.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼)) |
11 | 4, 5, 6, 7, 8, 10 | opsrval2 21979 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
12 | 11 | fveq2d 6895 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑂) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉))) |
13 | 3, 12 | eqtr4id 2786 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
14 | 0fv 6935 | . . . . . . 7 ⊢ (∅‘𝑇) = ∅ | |
15 | 14 | eqcomi 2736 | . . . . . 6 ⊢ ∅ = (∅‘𝑇) |
16 | reldmpsr 21840 | . . . . . . 7 ⊢ Rel dom mPwSer | |
17 | 16 | ovprc 7452 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
18 | reldmopsr 21976 | . . . . . . . 8 ⊢ Rel dom ordPwSer | |
19 | 18 | ovprc 7452 | . . . . . . 7 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅) |
20 | 19 | fveq1d 6893 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇)) |
21 | 15, 17, 20 | 3eqtr4a 2793 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
22 | 21, 4, 5 | 3eqtr4g 2792 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = 𝑂) |
23 | 22 | fveq2d 6895 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
24 | 23 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
25 | 13, 24 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 Vcvv 3469 ⊆ wss 3944 ∅c0 4318 〈cop 4630 × cxp 5670 ‘cfv 6542 (class class class)co 7414 sSet csts 17125 Slot cslot 17143 ndxcnx 17155 lecple 17233 mPwSer cmps 21830 ordPwSer copws 21834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-dec 12702 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ple 17246 df-psr 21835 df-opsr 21839 |
This theorem is referenced by: opsrbas 21982 opsrplusg 21984 opsrmulr 21986 opsrvsca 21988 opsrsca 21990 |
Copyright terms: Public domain | W3C validator |