![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opsrbaslem | Structured version Visualization version GIF version |
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
Ref | Expression |
---|---|
opsrbas.s | β’ π = (πΌ mPwSer π ) |
opsrbas.o | β’ π = ((πΌ ordPwSer π )βπ) |
opsrbas.t | β’ (π β π β (πΌ Γ πΌ)) |
opsrbaslem.1 | β’ πΈ = Slot (πΈβndx) |
opsrbaslem.2 | β’ (πΈβndx) β (leβndx) |
Ref | Expression |
---|---|
opsrbaslem | β’ (π β (πΈβπ) = (πΈβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrbaslem.1 | . . . 4 β’ πΈ = Slot (πΈβndx) | |
2 | opsrbaslem.2 | . . . 4 β’ (πΈβndx) β (leβndx) | |
3 | 1, 2 | setsnid 17147 | . . 3 β’ (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©)) |
4 | opsrbas.s | . . . . 5 β’ π = (πΌ mPwSer π ) | |
5 | opsrbas.o | . . . . 5 β’ π = ((πΌ ordPwSer π )βπ) | |
6 | eqid 2731 | . . . . 5 β’ (leβπ) = (leβπ) | |
7 | simprl 768 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β πΌ β V) | |
8 | simprr 770 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β V) | |
9 | opsrbas.t | . . . . . 6 β’ (π β π β (πΌ Γ πΌ)) | |
10 | 9 | adantr 480 | . . . . 5 β’ ((π β§ (πΌ β V β§ π β V)) β π β (πΌ Γ πΌ)) |
11 | 4, 5, 6, 7, 8, 10 | opsrval2 21823 | . . . 4 β’ ((π β§ (πΌ β V β§ π β V)) β π = (π sSet β¨(leβndx), (leβπ)β©)) |
12 | 11 | fveq2d 6896 | . . 3 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβ(π sSet β¨(leβndx), (leβπ)β©))) |
13 | 3, 12 | eqtr4id 2790 | . 2 β’ ((π β§ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
14 | 0fv 6936 | . . . . . . 7 β’ (β βπ) = β | |
15 | 14 | eqcomi 2740 | . . . . . 6 β’ β = (β βπ) |
16 | reldmpsr 21687 | . . . . . . 7 β’ Rel dom mPwSer | |
17 | 16 | ovprc 7450 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = β ) |
18 | reldmopsr 21820 | . . . . . . . 8 β’ Rel dom ordPwSer | |
19 | 18 | ovprc 7450 | . . . . . . 7 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ ordPwSer π ) = β ) |
20 | 19 | fveq1d 6894 | . . . . . 6 β’ (Β¬ (πΌ β V β§ π β V) β ((πΌ ordPwSer π )βπ) = (β βπ)) |
21 | 15, 17, 20 | 3eqtr4a 2797 | . . . . 5 β’ (Β¬ (πΌ β V β§ π β V) β (πΌ mPwSer π ) = ((πΌ ordPwSer π )βπ)) |
22 | 21, 4, 5 | 3eqtr4g 2796 | . . . 4 β’ (Β¬ (πΌ β V β§ π β V) β π = π) |
23 | 22 | fveq2d 6896 | . . 3 β’ (Β¬ (πΌ β V β§ π β V) β (πΈβπ) = (πΈβπ)) |
24 | 23 | adantl 481 | . 2 β’ ((π β§ Β¬ (πΌ β V β§ π β V)) β (πΈβπ) = (πΈβπ)) |
25 | 13, 24 | pm2.61dan 810 | 1 β’ (π β (πΈβπ) = (πΈβπ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wne 2939 Vcvv 3473 β wss 3949 β c0 4323 β¨cop 4635 Γ cxp 5675 βcfv 6544 (class class class)co 7412 sSet csts 17101 Slot cslot 17119 ndxcnx 17131 lecple 17209 mPwSer cmps 21677 ordPwSer copws 21681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-dec 12683 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ple 17222 df-psr 21682 df-opsr 21686 |
This theorem is referenced by: opsrbas 21826 opsrplusg 21828 opsrmulr 21830 opsrvsca 21832 opsrsca 21834 |
Copyright terms: Public domain | W3C validator |