MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrbaslem Structured version   Visualization version   GIF version

Theorem opsrbaslem 22085
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.)
Hypotheses
Ref Expression
opsrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrbas.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrbas.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
opsrbaslem.1 𝐸 = Slot (𝐸‘ndx)
opsrbaslem.2 (𝐸‘ndx) ≠ (le‘ndx)
Assertion
Ref Expression
opsrbaslem (𝜑 → (𝐸𝑆) = (𝐸𝑂))

Proof of Theorem opsrbaslem
StepHypRef Expression
1 opsrbaslem.1 . . . 4 𝐸 = Slot (𝐸‘ndx)
2 opsrbaslem.2 . . . 4 (𝐸‘ndx) ≠ (le‘ndx)
31, 2setsnid 17243 . . 3 (𝐸𝑆) = (𝐸‘(𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
4 opsrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
5 opsrbas.o . . . . 5 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
6 eqid 2735 . . . . 5 (le‘𝑂) = (le‘𝑂)
7 simprl 771 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V)
8 simprr 773 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V)
9 opsrbas.t . . . . . 6 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
109adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼))
114, 5, 6, 7, 8, 10opsrval2 22084 . . . 4 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩))
1211fveq2d 6911 . . 3 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑂) = (𝐸‘(𝑆 sSet ⟨(le‘ndx), (le‘𝑂)⟩)))
133, 12eqtr4id 2794 . 2 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑆) = (𝐸𝑂))
14 0fv 6951 . . . . . . 7 (∅‘𝑇) = ∅
1514eqcomi 2744 . . . . . 6 ∅ = (∅‘𝑇)
16 reldmpsr 21952 . . . . . . 7 Rel dom mPwSer
1716ovprc 7469 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
18 reldmopsr 22081 . . . . . . . 8 Rel dom ordPwSer
1918ovprc 7469 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅)
2019fveq1d 6909 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇))
2115, 17, 203eqtr4a 2801 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇))
2221, 4, 53eqtr4g 2800 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = 𝑂)
2322fveq2d 6911 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐸𝑆) = (𝐸𝑂))
2423adantl 481 . 2 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸𝑆) = (𝐸𝑂))
2513, 24pm2.61dan 813 1 (𝜑 → (𝐸𝑆) = (𝐸𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  Vcvv 3478  wss 3963  c0 4339  cop 4637   × cxp 5687  cfv 6563  (class class class)co 7431   sSet csts 17197  Slot cslot 17215  ndxcnx 17227  lecple 17305   mPwSer cmps 21942   ordPwSer copws 21946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-dec 12732  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ple 17318  df-psr 21947  df-opsr 21951
This theorem is referenced by:  opsrbas  22087  opsrplusg  22089  opsrmulr  22091  opsrvsca  22093  opsrsca  22095
  Copyright terms: Public domain W3C validator