| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opsrbaslem | Structured version Visualization version GIF version | ||
| Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 9-Sep-2021.) (Revised by AV, 1-Nov-2024.) |
| Ref | Expression |
|---|---|
| opsrbas.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| opsrbas.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
| opsrbas.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
| opsrbaslem.1 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| opsrbaslem.2 | ⊢ (𝐸‘ndx) ≠ (le‘ndx) |
| Ref | Expression |
|---|---|
| opsrbaslem | ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrbaslem.1 | . . . 4 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | opsrbaslem.2 | . . . 4 ⊢ (𝐸‘ndx) ≠ (le‘ndx) | |
| 3 | 1, 2 | setsnid 17232 | . . 3 ⊢ (𝐸‘𝑆) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
| 4 | opsrbas.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | opsrbas.o | . . . . 5 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (le‘𝑂) = (le‘𝑂) | |
| 7 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V) | |
| 8 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V) | |
| 9 | opsrbas.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼)) |
| 11 | 4, 5, 6, 7, 8, 10 | opsrval2 22011 | . . . 4 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉)) |
| 12 | 11 | fveq2d 6885 | . . 3 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑂) = (𝐸‘(𝑆 sSet 〈(le‘ndx), (le‘𝑂)〉))) |
| 13 | 3, 12 | eqtr4id 2790 | . 2 ⊢ ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| 14 | 0fv 6925 | . . . . . . 7 ⊢ (∅‘𝑇) = ∅ | |
| 15 | 14 | eqcomi 2745 | . . . . . 6 ⊢ ∅ = (∅‘𝑇) |
| 16 | reldmpsr 21879 | . . . . . . 7 ⊢ Rel dom mPwSer | |
| 17 | 16 | ovprc 7448 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅) |
| 18 | reldmopsr 22008 | . . . . . . . 8 ⊢ Rel dom ordPwSer | |
| 19 | 18 | ovprc 7448 | . . . . . . 7 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅) |
| 20 | 19 | fveq1d 6883 | . . . . . 6 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇)) |
| 21 | 15, 17, 20 | 3eqtr4a 2797 | . . . . 5 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ((𝐼 ordPwSer 𝑅)‘𝑇)) |
| 22 | 21, 4, 5 | 3eqtr4g 2796 | . . . 4 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = 𝑂) |
| 23 | 22 | fveq2d 6885 | . . 3 ⊢ (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| 24 | 23 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| 25 | 13, 24 | pm2.61dan 812 | 1 ⊢ (𝜑 → (𝐸‘𝑆) = (𝐸‘𝑂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 〈cop 4612 × cxp 5657 ‘cfv 6536 (class class class)co 7410 sSet csts 17187 Slot cslot 17205 ndxcnx 17217 lecple 17283 mPwSer cmps 21869 ordPwSer copws 21873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-dec 12714 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ple 17296 df-psr 21874 df-opsr 21878 |
| This theorem is referenced by: opsrbas 22013 opsrplusg 22014 opsrmulr 22015 opsrvsca 22016 opsrsca 22017 |
| Copyright terms: Public domain | W3C validator |