MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrle Structured version   Visualization version   GIF version

Theorem opsrle 21913
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opsrle.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrle.o 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
opsrle.b 𝐵 = (Base‘𝑆)
opsrle.q < = (lt‘𝑅)
opsrle.c 𝐶 = (𝑇 <bag 𝐼)
opsrle.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
opsrle.l = (le‘𝑂)
opsrle.t (𝜑𝑇 ⊆ (𝐼 × 𝐼))
Assertion
Ref Expression
opsrle (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
Distinct variable groups:   𝑥,𝑦,𝐵   𝑧,𝑤,𝐷   𝑤,,𝑥,𝑦,𝑧,𝐼   𝑤,𝑅,𝑥,𝑦,𝑧   𝜑,𝑤,𝑥,𝑦,𝑧   𝑤,𝑇,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑()   𝐵(𝑧,𝑤,)   𝐶(𝑥,𝑦,𝑧,𝑤,)   𝐷(𝑥,𝑦,)   𝑅()   𝑆(𝑥,𝑦,𝑧,𝑤,)   < (𝑥,𝑦,𝑧,𝑤,)   𝑇()   (𝑥,𝑦,𝑧,𝑤,)   𝑂(𝑥,𝑦,𝑧,𝑤,)

Proof of Theorem opsrle
StepHypRef Expression
1 opsrle.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrle.o . . . . 5 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇)
3 opsrle.b . . . . 5 𝐵 = (Base‘𝑆)
4 opsrle.q . . . . 5 < = (lt‘𝑅)
5 opsrle.c . . . . 5 𝐶 = (𝑇 <bag 𝐼)
6 opsrle.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 eqid 2731 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
8 simprl 768 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐼 ∈ V)
9 simprr 770 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑅 ∈ V)
10 opsrle.t . . . . . 6 (𝜑𝑇 ⊆ (𝐼 × 𝐼))
1110adantr 480 . . . . 5 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑇 ⊆ (𝐼 × 𝐼))
121, 2, 3, 4, 5, 6, 7, 8, 9, 11opsrval 21912 . . . 4 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
1312fveq2d 6895 . . 3 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (le‘𝑂) = (le‘(𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
14 opsrle.l . . 3 = (le‘𝑂)
151ovexi 7446 . . . 4 𝑆 ∈ V
163fvexi 6905 . . . . . 6 𝐵 ∈ V
1716, 16xpex 7744 . . . . 5 (𝐵 × 𝐵) ∈ V
18 vex 3477 . . . . . . . . 9 𝑥 ∈ V
19 vex 3477 . . . . . . . . 9 𝑦 ∈ V
2018, 19prss 4823 . . . . . . . 8 ((𝑥𝐵𝑦𝐵) ↔ {𝑥, 𝑦} ⊆ 𝐵)
2120anbi1i 623 . . . . . . 7 (((𝑥𝐵𝑦𝐵) ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦)))
2221opabbii 5215 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}
23 opabssxp 5768 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} ⊆ (𝐵 × 𝐵)
2422, 23eqsstrri 4017 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} ⊆ (𝐵 × 𝐵)
2517, 24ssexi 5322 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} ∈ V
26 pleid 17319 . . . . 5 le = Slot (le‘ndx)
2726setsid 17148 . . . 4 ((𝑆 ∈ V ∧ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} ∈ V) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = (le‘(𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
2815, 25, 27mp2an 689 . . 3 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = (le‘(𝑆 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩))
2913, 14, 283eqtr4g 2796 . 2 ((𝜑 ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
30 reldmopsr 21911 . . . . . . . . . 10 Rel dom ordPwSer
3130ovprc 7450 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 ordPwSer 𝑅) = ∅)
3231adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 ordPwSer 𝑅) = ∅)
3332fveq1d 6893 . . . . . . 7 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → ((𝐼 ordPwSer 𝑅)‘𝑇) = (∅‘𝑇))
342, 33eqtrid 2783 . . . . . 6 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = (∅‘𝑇))
35 0fv 6935 . . . . . 6 (∅‘𝑇) = ∅
3634, 35eqtrdi 2787 . . . . 5 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑂 = ∅)
3736fveq2d 6895 . . . 4 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (le‘𝑂) = (le‘∅))
3826str0 17129 . . . 4 ∅ = (le‘∅)
3937, 14, 383eqtr4g 2796 . . 3 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → = ∅)
40 reldmpsr 21777 . . . . . . . . . . 11 Rel dom mPwSer
4140ovprc 7450 . . . . . . . . . 10 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
4241adantl 481 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐼 mPwSer 𝑅) = ∅)
431, 42eqtrid 2783 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝑆 = ∅)
4443fveq2d 6895 . . . . . . 7 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (Base‘𝑆) = (Base‘∅))
45 base0 17156 . . . . . . 7 ∅ = (Base‘∅)
4644, 3, 453eqtr4g 2796 . . . . . 6 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → 𝐵 = ∅)
4746xpeq2d 5706 . . . . 5 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐵 × 𝐵) = (𝐵 × ∅))
48 xp0 6157 . . . . 5 (𝐵 × ∅) = ∅
4947, 48eqtrdi 2787 . . . 4 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → (𝐵 × 𝐵) = ∅)
50 sseq0 4399 . . . 4 (({⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} ⊆ (𝐵 × 𝐵) ∧ (𝐵 × 𝐵) = ∅) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = ∅)
5124, 49, 50sylancr 586 . . 3 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))} = ∅)
5239, 51eqtr4d 2774 . 2 ((𝜑 ∧ ¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) → = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
5329, 52pm2.61dan 810 1 (𝜑 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ (∃𝑧𝐷 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝐷 (𝑤𝐶𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 844   = wceq 1540  wcel 2105  wral 3060  wrex 3069  {crab 3431  Vcvv 3473  wss 3948  c0 4322  {cpr 4630  cop 4634   class class class wbr 5148  {copab 5210   × cxp 5674  ccnv 5675  cima 5679  cfv 6543  (class class class)co 7412  m cmap 8826  Fincfn 8945  cn 12219  0cn0 12479   sSet csts 17103  ndxcnx 17133  Basecbs 17151  lecple 17211  ltcplt 18271   mPwSer cmps 21767   <bag cltb 21770   ordPwSer copws 21771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-ltxr 11260  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-dec 12685  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ple 17224  df-psr 21772  df-opsr 21776
This theorem is referenced by:  opsrval2  21914  opsrtoslem1  21927
  Copyright terms: Public domain W3C validator