MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrle Structured version   Visualization version   GIF version

Theorem opsrle 21464
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opsrle.s 𝑆 = (𝐼 mPwSer 𝑅)
opsrle.o 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
opsrle.b 𝐡 = (Baseβ€˜π‘†)
opsrle.q < = (ltβ€˜π‘…)
opsrle.c 𝐢 = (𝑇 <bag 𝐼)
opsrle.d 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
opsrle.l ≀ = (leβ€˜π‘‚)
opsrle.t (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
Assertion
Ref Expression
opsrle (πœ‘ β†’ ≀ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))})
Distinct variable groups:   π‘₯,𝑦,𝐡   𝑧,𝑀,𝐷   𝑀,β„Ž,π‘₯,𝑦,𝑧,𝐼   𝑀,𝑅,π‘₯,𝑦,𝑧   πœ‘,𝑀,π‘₯,𝑦,𝑧   𝑀,𝑇,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ‘(β„Ž)   𝐡(𝑧,𝑀,β„Ž)   𝐢(π‘₯,𝑦,𝑧,𝑀,β„Ž)   𝐷(π‘₯,𝑦,β„Ž)   𝑅(β„Ž)   𝑆(π‘₯,𝑦,𝑧,𝑀,β„Ž)   < (π‘₯,𝑦,𝑧,𝑀,β„Ž)   𝑇(β„Ž)   ≀ (π‘₯,𝑦,𝑧,𝑀,β„Ž)   𝑂(π‘₯,𝑦,𝑧,𝑀,β„Ž)

Proof of Theorem opsrle
StepHypRef Expression
1 opsrle.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 opsrle.o . . . . 5 𝑂 = ((𝐼 ordPwSer 𝑅)β€˜π‘‡)
3 opsrle.b . . . . 5 𝐡 = (Baseβ€˜π‘†)
4 opsrle.q . . . . 5 < = (ltβ€˜π‘…)
5 opsrle.c . . . . 5 𝐢 = (𝑇 <bag 𝐼)
6 opsrle.d . . . . 5 𝐷 = {β„Ž ∈ (β„•0 ↑m 𝐼) ∣ (β—‘β„Ž β€œ β„•) ∈ Fin}
7 eqid 2733 . . . . 5 {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}
8 simprl 770 . . . . 5 ((πœ‘ ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝐼 ∈ V)
9 simprr 772 . . . . 5 ((πœ‘ ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝑅 ∈ V)
10 opsrle.t . . . . . 6 (πœ‘ β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
1110adantr 482 . . . . 5 ((πœ‘ ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝑇 βŠ† (𝐼 Γ— 𝐼))
121, 2, 3, 4, 5, 6, 7, 8, 9, 11opsrval 21463 . . . 4 ((πœ‘ ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝑂 = (𝑆 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩))
1312fveq2d 6847 . . 3 ((πœ‘ ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (leβ€˜π‘‚) = (leβ€˜(𝑆 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩)))
14 opsrle.l . . 3 ≀ = (leβ€˜π‘‚)
151ovexi 7392 . . . 4 𝑆 ∈ V
163fvexi 6857 . . . . . 6 𝐡 ∈ V
1716, 16xpex 7688 . . . . 5 (𝐡 Γ— 𝐡) ∈ V
18 vex 3448 . . . . . . . . 9 π‘₯ ∈ V
19 vex 3448 . . . . . . . . 9 𝑦 ∈ V
2018, 19prss 4781 . . . . . . . 8 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ↔ {π‘₯, 𝑦} βŠ† 𝐡)
2120anbi1i 625 . . . . . . 7 (((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦)) ↔ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦)))
2221opabbii 5173 . . . . . 6 {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}
23 opabssxp 5725 . . . . . 6 {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} βŠ† (𝐡 Γ— 𝐡)
2422, 23eqsstrri 3980 . . . . 5 {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} βŠ† (𝐡 Γ— 𝐡)
2517, 24ssexi 5280 . . . 4 {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} ∈ V
26 pleid 17253 . . . . 5 le = Slot (leβ€˜ndx)
2726setsid 17085 . . . 4 ((𝑆 ∈ V ∧ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} ∈ V) β†’ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} = (leβ€˜(𝑆 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩)))
2815, 25, 27mp2an 691 . . 3 {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} = (leβ€˜(𝑆 sSet ⟨(leβ€˜ndx), {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))}⟩))
2913, 14, 283eqtr4g 2798 . 2 ((πœ‘ ∧ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ ≀ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))})
30 reldmopsr 21462 . . . . . . . . . 10 Rel dom ordPwSer
3130ovprc 7396 . . . . . . . . 9 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (𝐼 ordPwSer 𝑅) = βˆ…)
3231adantl 483 . . . . . . . 8 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (𝐼 ordPwSer 𝑅) = βˆ…)
3332fveq1d 6845 . . . . . . 7 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ ((𝐼 ordPwSer 𝑅)β€˜π‘‡) = (βˆ…β€˜π‘‡))
342, 33eqtrid 2785 . . . . . 6 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝑂 = (βˆ…β€˜π‘‡))
35 0fv 6887 . . . . . 6 (βˆ…β€˜π‘‡) = βˆ…
3634, 35eqtrdi 2789 . . . . 5 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝑂 = βˆ…)
3736fveq2d 6847 . . . 4 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (leβ€˜π‘‚) = (leβ€˜βˆ…))
3826str0 17066 . . . 4 βˆ… = (leβ€˜βˆ…)
3937, 14, 383eqtr4g 2798 . . 3 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ ≀ = βˆ…)
40 reldmpsr 21332 . . . . . . . . . . 11 Rel dom mPwSer
4140ovprc 7396 . . . . . . . . . 10 (Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) β†’ (𝐼 mPwSer 𝑅) = βˆ…)
4241adantl 483 . . . . . . . . 9 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (𝐼 mPwSer 𝑅) = βˆ…)
431, 42eqtrid 2785 . . . . . . . 8 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝑆 = βˆ…)
4443fveq2d 6847 . . . . . . 7 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (Baseβ€˜π‘†) = (Baseβ€˜βˆ…))
45 base0 17093 . . . . . . 7 βˆ… = (Baseβ€˜βˆ…)
4644, 3, 453eqtr4g 2798 . . . . . 6 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ 𝐡 = βˆ…)
4746xpeq2d 5664 . . . . 5 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (𝐡 Γ— 𝐡) = (𝐡 Γ— βˆ…))
48 xp0 6111 . . . . 5 (𝐡 Γ— βˆ…) = βˆ…
4947, 48eqtrdi 2789 . . . 4 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ (𝐡 Γ— 𝐡) = βˆ…)
50 sseq0 4360 . . . 4 (({⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} βŠ† (𝐡 Γ— 𝐡) ∧ (𝐡 Γ— 𝐡) = βˆ…) β†’ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} = βˆ…)
5124, 49, 50sylancr 588 . . 3 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))} = βˆ…)
5239, 51eqtr4d 2776 . 2 ((πœ‘ ∧ Β¬ (𝐼 ∈ V ∧ 𝑅 ∈ V)) β†’ ≀ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))})
5329, 52pm2.61dan 812 1 (πœ‘ β†’ ≀ = {⟨π‘₯, π‘¦βŸ© ∣ ({π‘₯, 𝑦} βŠ† 𝐡 ∧ (βˆƒπ‘§ ∈ 𝐷 ((π‘₯β€˜π‘§) < (π‘¦β€˜π‘§) ∧ βˆ€π‘€ ∈ 𝐷 (𝑀𝐢𝑧 β†’ (π‘₯β€˜π‘€) = (π‘¦β€˜π‘€))) ∨ π‘₯ = 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070  {crab 3406  Vcvv 3444   βŠ† wss 3911  βˆ…c0 4283  {cpr 4589  βŸ¨cop 4593   class class class wbr 5106  {copab 5168   Γ— cxp 5632  β—‘ccnv 5633   β€œ cima 5637  β€˜cfv 6497  (class class class)co 7358   ↑m cmap 8768  Fincfn 8886  β„•cn 12158  β„•0cn0 12418   sSet csts 17040  ndxcnx 17070  Basecbs 17088  lecple 17145  ltcplt 18202   mPwSer cmps 21322   <bag cltb 21325   ordPwSer copws 21326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-ltxr 11199  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-dec 12624  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ple 17158  df-psr 21327  df-opsr 21331
This theorem is referenced by:  opsrval2  21465  opsrtoslem1  21478
  Copyright terms: Public domain W3C validator