MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexprelg Structured version   Visualization version   GIF version

Theorem relexprelg 14749
Description: The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexprelg ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))

Proof of Theorem relexprelg
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12235 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 eqeq1 2742 . . . . . . . 8 (𝑛 = 1 → (𝑛 = 1 ↔ 1 = 1))
32imbi1d 342 . . . . . . 7 (𝑛 = 1 → ((𝑛 = 1 → Rel 𝑅) ↔ (1 = 1 → Rel 𝑅)))
43anbi2d 629 . . . . . 6 (𝑛 = 1 → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ (1 = 1 → Rel 𝑅))))
5 oveq2 7283 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
65releqd 5689 . . . . . 6 (𝑛 = 1 → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟1)))
74, 6imbi12d 345 . . . . 5 (𝑛 = 1 → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel (𝑅𝑟1))))
8 eqeq1 2742 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 = 1 ↔ 𝑚 = 1))
98imbi1d 342 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 = 1 → Rel 𝑅) ↔ (𝑚 = 1 → Rel 𝑅)))
109anbi2d 629 . . . . . 6 (𝑛 = 𝑚 → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ (𝑚 = 1 → Rel 𝑅))))
11 oveq2 7283 . . . . . . 7 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
1211releqd 5689 . . . . . 6 (𝑛 = 𝑚 → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟𝑚)))
1310, 12imbi12d 345 . . . . 5 (𝑛 = 𝑚 → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ (𝑚 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑚))))
14 eqeq1 2742 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 = 1 ↔ (𝑚 + 1) = 1))
1514imbi1d 342 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 = 1 → Rel 𝑅) ↔ ((𝑚 + 1) = 1 → Rel 𝑅)))
1615anbi2d 629 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅))))
17 oveq2 7283 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1817releqd 5689 . . . . . 6 (𝑛 = (𝑚 + 1) → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟(𝑚 + 1))))
1916, 18imbi12d 345 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅𝑟(𝑚 + 1)))))
20 eqeq1 2742 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 = 1 ↔ 𝑁 = 1))
2120imbi1d 342 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 = 1 → Rel 𝑅) ↔ (𝑁 = 1 → Rel 𝑅)))
2221anbi2d 629 . . . . . 6 (𝑛 = 𝑁 → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅))))
23 oveq2 7283 . . . . . . 7 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2423releqd 5689 . . . . . 6 (𝑛 = 𝑁 → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟𝑁)))
2522, 24imbi12d 345 . . . . 5 (𝑛 = 𝑁 → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))))
26 eqid 2738 . . . . . . . 8 1 = 1
27 pm2.27 42 . . . . . . . 8 (1 = 1 → ((1 = 1 → Rel 𝑅) → Rel 𝑅))
2826, 27ax-mp 5 . . . . . . 7 ((1 = 1 → Rel 𝑅) → Rel 𝑅)
2928adantl 482 . . . . . 6 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel 𝑅)
30 relexp1g 14737 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
3130adantr 481 . . . . . . 7 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → (𝑅𝑟1) = 𝑅)
3231releqd 5689 . . . . . 6 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → (Rel (𝑅𝑟1) ↔ Rel 𝑅))
3329, 32mpbird 256 . . . . 5 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel (𝑅𝑟1))
34 relco 6148 . . . . . . . . 9 Rel ((𝑅𝑟𝑚) ∘ 𝑅)
35 relexpsucnnr 14736 . . . . . . . . . . 11 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3635ancoms 459 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3736releqd 5689 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (Rel (𝑅𝑟(𝑚 + 1)) ↔ Rel ((𝑅𝑟𝑚) ∘ 𝑅)))
3834, 37mpbiri 257 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → Rel (𝑅𝑟(𝑚 + 1)))
3938a1d 25 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (((𝑚 + 1) = 1 → Rel 𝑅) → Rel (𝑅𝑟(𝑚 + 1))))
4039expimpd 454 . . . . . 6 (𝑚 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅𝑟(𝑚 + 1))))
4140a1d 25 . . . . 5 (𝑚 ∈ ℕ → (((𝑅𝑉 ∧ (𝑚 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑚)) → ((𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅𝑟(𝑚 + 1)))))
427, 13, 19, 25, 33, 41nnind 11991 . . . 4 (𝑁 ∈ ℕ → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
43 relexp0rel 14748 . . . . . . . 8 (𝑅𝑉 → Rel (𝑅𝑟0))
4443adantl 482 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟0))
45 simpl 483 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
4645oveq2d 7291 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
4746releqd 5689 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (Rel (𝑅𝑟𝑁) ↔ Rel (𝑅𝑟0)))
4844, 47mpbird 256 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
4948a1d 25 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → ((𝑁 = 1 → Rel 𝑅) → Rel (𝑅𝑟𝑁)))
5049expimpd 454 . . . 4 (𝑁 = 0 → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
5142, 50jaoi 854 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
521, 51sylbi 216 . 2 (𝑁 ∈ ℕ0 → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
53523impib 1115 1 ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  ccom 5593  Rel wrel 5594  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  0cn0 12233  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-relexp 14731
This theorem is referenced by:  relexprel  14750  relexpfld  14760  relexpuzrel  14763
  Copyright terms: Public domain W3C validator