MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexprelg Structured version   Visualization version   GIF version

Theorem relexprelg 15077
Description: The exponentiation of a class is a relation except when the exponent is one and the class is not a relation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexprelg ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))

Proof of Theorem relexprelg
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 12528 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 eqeq1 2741 . . . . . . . 8 (𝑛 = 1 → (𝑛 = 1 ↔ 1 = 1))
32imbi1d 341 . . . . . . 7 (𝑛 = 1 → ((𝑛 = 1 → Rel 𝑅) ↔ (1 = 1 → Rel 𝑅)))
43anbi2d 630 . . . . . 6 (𝑛 = 1 → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ (1 = 1 → Rel 𝑅))))
5 oveq2 7439 . . . . . . 7 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
65releqd 5788 . . . . . 6 (𝑛 = 1 → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟1)))
74, 6imbi12d 344 . . . . 5 (𝑛 = 1 → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel (𝑅𝑟1))))
8 eqeq1 2741 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛 = 1 ↔ 𝑚 = 1))
98imbi1d 341 . . . . . . 7 (𝑛 = 𝑚 → ((𝑛 = 1 → Rel 𝑅) ↔ (𝑚 = 1 → Rel 𝑅)))
109anbi2d 630 . . . . . 6 (𝑛 = 𝑚 → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ (𝑚 = 1 → Rel 𝑅))))
11 oveq2 7439 . . . . . . 7 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
1211releqd 5788 . . . . . 6 (𝑛 = 𝑚 → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟𝑚)))
1310, 12imbi12d 344 . . . . 5 (𝑛 = 𝑚 → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ (𝑚 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑚))))
14 eqeq1 2741 . . . . . . . 8 (𝑛 = (𝑚 + 1) → (𝑛 = 1 ↔ (𝑚 + 1) = 1))
1514imbi1d 341 . . . . . . 7 (𝑛 = (𝑚 + 1) → ((𝑛 = 1 → Rel 𝑅) ↔ ((𝑚 + 1) = 1 → Rel 𝑅)))
1615anbi2d 630 . . . . . 6 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅))))
17 oveq2 7439 . . . . . . 7 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
1817releqd 5788 . . . . . 6 (𝑛 = (𝑚 + 1) → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟(𝑚 + 1))))
1916, 18imbi12d 344 . . . . 5 (𝑛 = (𝑚 + 1) → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅𝑟(𝑚 + 1)))))
20 eqeq1 2741 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 = 1 ↔ 𝑁 = 1))
2120imbi1d 341 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 = 1 → Rel 𝑅) ↔ (𝑁 = 1 → Rel 𝑅)))
2221anbi2d 630 . . . . . 6 (𝑛 = 𝑁 → ((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅))))
23 oveq2 7439 . . . . . . 7 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
2423releqd 5788 . . . . . 6 (𝑛 = 𝑁 → (Rel (𝑅𝑟𝑛) ↔ Rel (𝑅𝑟𝑁)))
2522, 24imbi12d 344 . . . . 5 (𝑛 = 𝑁 → (((𝑅𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑛)) ↔ ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))))
26 eqid 2737 . . . . . . . 8 1 = 1
27 pm2.27 42 . . . . . . . 8 (1 = 1 → ((1 = 1 → Rel 𝑅) → Rel 𝑅))
2826, 27ax-mp 5 . . . . . . 7 ((1 = 1 → Rel 𝑅) → Rel 𝑅)
2928adantl 481 . . . . . 6 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel 𝑅)
30 relexp1g 15065 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
3130adantr 480 . . . . . . 7 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → (𝑅𝑟1) = 𝑅)
3231releqd 5788 . . . . . 6 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → (Rel (𝑅𝑟1) ↔ Rel 𝑅))
3329, 32mpbird 257 . . . . 5 ((𝑅𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel (𝑅𝑟1))
34 relco 6126 . . . . . . . . 9 Rel ((𝑅𝑟𝑚) ∘ 𝑅)
35 relexpsucnnr 15064 . . . . . . . . . . 11 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3635ancoms 458 . . . . . . . . . 10 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
3736releqd 5788 . . . . . . . . 9 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (Rel (𝑅𝑟(𝑚 + 1)) ↔ Rel ((𝑅𝑟𝑚) ∘ 𝑅)))
3834, 37mpbiri 258 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → Rel (𝑅𝑟(𝑚 + 1)))
3938a1d 25 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (((𝑚 + 1) = 1 → Rel 𝑅) → Rel (𝑅𝑟(𝑚 + 1))))
4039expimpd 453 . . . . . 6 (𝑚 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅𝑟(𝑚 + 1))))
4140a1d 25 . . . . 5 (𝑚 ∈ ℕ → (((𝑅𝑉 ∧ (𝑚 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑚)) → ((𝑅𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅𝑟(𝑚 + 1)))))
427, 13, 19, 25, 33, 41nnind 12284 . . . 4 (𝑁 ∈ ℕ → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
43 relexp0rel 15076 . . . . . . . 8 (𝑅𝑉 → Rel (𝑅𝑟0))
4443adantl 481 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟0))
45 simpl 482 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
4645oveq2d 7447 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
4746releqd 5788 . . . . . . 7 ((𝑁 = 0 ∧ 𝑅𝑉) → (Rel (𝑅𝑟𝑁) ↔ Rel (𝑅𝑟0)))
4844, 47mpbird 257 . . . . . 6 ((𝑁 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
4948a1d 25 . . . . 5 ((𝑁 = 0 ∧ 𝑅𝑉) → ((𝑁 = 1 → Rel 𝑅) → Rel (𝑅𝑟𝑁)))
5049expimpd 453 . . . 4 (𝑁 = 0 → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
5142, 50jaoi 858 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
521, 51sylbi 217 . 2 (𝑁 ∈ ℕ0 → ((𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁)))
53523impib 1117 1 ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  ccom 5689  Rel wrel 5690  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  cn 12266  0cn0 12526  𝑟crelexp 15058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-seq 14043  df-relexp 15059
This theorem is referenced by:  relexprel  15078  relexpfld  15088  relexpuzrel  15091
  Copyright terms: Public domain W3C validator