Step | Hyp | Ref
| Expression |
1 | | elnn0 12165 |
. . 3
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑛 = 1 → (𝑛 = 1 ↔ 1 = 1)) |
3 | 2 | imbi1d 341 |
. . . . . . 7
⊢ (𝑛 = 1 → ((𝑛 = 1 → Rel 𝑅) ↔ (1 = 1 → Rel 𝑅))) |
4 | 3 | anbi2d 628 |
. . . . . 6
⊢ (𝑛 = 1 → ((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅 ∈ 𝑉 ∧ (1 = 1 → Rel 𝑅)))) |
5 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 1 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟1)) |
6 | 5 | releqd 5679 |
. . . . . 6
⊢ (𝑛 = 1 → (Rel (𝑅↑𝑟𝑛) ↔ Rel (𝑅↑𝑟1))) |
7 | 4, 6 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 1 → (((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑛)) ↔ ((𝑅 ∈ 𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟1)))) |
8 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑛 = 1 ↔ 𝑚 = 1)) |
9 | 8 | imbi1d 341 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((𝑛 = 1 → Rel 𝑅) ↔ (𝑚 = 1 → Rel 𝑅))) |
10 | 9 | anbi2d 628 |
. . . . . 6
⊢ (𝑛 = 𝑚 → ((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅 ∈ 𝑉 ∧ (𝑚 = 1 → Rel 𝑅)))) |
11 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑚)) |
12 | 11 | releqd 5679 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (Rel (𝑅↑𝑟𝑛) ↔ Rel (𝑅↑𝑟𝑚))) |
13 | 10, 12 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 𝑚 → (((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑛)) ↔ ((𝑅 ∈ 𝑉 ∧ (𝑚 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑚)))) |
14 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑛 = (𝑚 + 1) → (𝑛 = 1 ↔ (𝑚 + 1) = 1)) |
15 | 14 | imbi1d 341 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → ((𝑛 = 1 → Rel 𝑅) ↔ ((𝑚 + 1) = 1 → Rel 𝑅))) |
16 | 15 | anbi2d 628 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → ((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅 ∈ 𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)))) |
17 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = (𝑚 + 1) → (𝑅↑𝑟𝑛) = (𝑅↑𝑟(𝑚 + 1))) |
18 | 17 | releqd 5679 |
. . . . . 6
⊢ (𝑛 = (𝑚 + 1) → (Rel (𝑅↑𝑟𝑛) ↔ Rel (𝑅↑𝑟(𝑚 + 1)))) |
19 | 16, 18 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = (𝑚 + 1) → (((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑛)) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟(𝑚 + 1))))) |
20 | | eqeq1 2742 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝑛 = 1 ↔ 𝑁 = 1)) |
21 | 20 | imbi1d 341 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → ((𝑛 = 1 → Rel 𝑅) ↔ (𝑁 = 1 → Rel 𝑅))) |
22 | 21 | anbi2d 628 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) ↔ (𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)))) |
23 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟𝑁)) |
24 | 23 | releqd 5679 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (Rel (𝑅↑𝑟𝑛) ↔ Rel (𝑅↑𝑟𝑁))) |
25 | 22, 24 | imbi12d 344 |
. . . . 5
⊢ (𝑛 = 𝑁 → (((𝑅 ∈ 𝑉 ∧ (𝑛 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑛)) ↔ ((𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁)))) |
26 | | eqid 2738 |
. . . . . . . 8
⊢ 1 =
1 |
27 | | pm2.27 42 |
. . . . . . . 8
⊢ (1 = 1
→ ((1 = 1 → Rel 𝑅) → Rel 𝑅)) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((1 = 1
→ Rel 𝑅) → Rel
𝑅) |
29 | 28 | adantl 481 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel 𝑅) |
30 | | relexp1g 14665 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ (1 = 1 → Rel 𝑅)) → (𝑅↑𝑟1) = 𝑅) |
32 | 31 | releqd 5679 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (1 = 1 → Rel 𝑅)) → (Rel (𝑅↑𝑟1) ↔ Rel
𝑅)) |
33 | 29, 32 | mpbird 256 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (1 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟1)) |
34 | | relco 6137 |
. . . . . . . . 9
⊢ Rel
((𝑅↑𝑟𝑚) ∘ 𝑅) |
35 | | relexpsucnnr 14664 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑚 ∈ ℕ) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
36 | 35 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟(𝑚 + 1)) = ((𝑅↑𝑟𝑚) ∘ 𝑅)) |
37 | 36 | releqd 5679 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (Rel (𝑅↑𝑟(𝑚 + 1)) ↔ Rel ((𝑅↑𝑟𝑚) ∘ 𝑅))) |
38 | 34, 37 | mpbiri 257 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟(𝑚 + 1))) |
39 | 38 | a1d 25 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ ∧ 𝑅 ∈ 𝑉) → (((𝑚 + 1) = 1 → Rel 𝑅) → Rel (𝑅↑𝑟(𝑚 + 1)))) |
40 | 39 | expimpd 453 |
. . . . . 6
⊢ (𝑚 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟(𝑚 + 1)))) |
41 | 40 | a1d 25 |
. . . . 5
⊢ (𝑚 ∈ ℕ → (((𝑅 ∈ 𝑉 ∧ (𝑚 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑚)) → ((𝑅 ∈ 𝑉 ∧ ((𝑚 + 1) = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟(𝑚 + 1))))) |
42 | 7, 13, 19, 25, 33, 41 | nnind 11921 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁))) |
43 | | relexp0rel 14676 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
44 | 43 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟0)) |
45 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → 𝑁 = 0) |
46 | 45 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (𝑅↑𝑟𝑁) = (𝑅↑𝑟0)) |
47 | 46 | releqd 5679 |
. . . . . . 7
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → (Rel (𝑅↑𝑟𝑁) ↔ Rel (𝑅↑𝑟0))) |
48 | 44, 47 | mpbird 256 |
. . . . . 6
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → Rel (𝑅↑𝑟𝑁)) |
49 | 48 | a1d 25 |
. . . . 5
⊢ ((𝑁 = 0 ∧ 𝑅 ∈ 𝑉) → ((𝑁 = 1 → Rel 𝑅) → Rel (𝑅↑𝑟𝑁))) |
50 | 49 | expimpd 453 |
. . . 4
⊢ (𝑁 = 0 → ((𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁))) |
51 | 42, 50 | jaoi 853 |
. . 3
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → ((𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁))) |
52 | 1, 51 | sylbi 216 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁))) |
53 | 52 | 3impib 1114 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑅 ∈ 𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅↑𝑟𝑁)) |