![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnextrel | Structured version Visualization version GIF version |
Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
Ref | Expression |
---|---|
cnextfrel.1 | ⊢ 𝐶 = ∪ 𝐽 |
cnextfrel.2 | ⊢ 𝐵 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnextrel | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5718 | . . . 4 ⊢ Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) | |
2 | 1 | rgenw 3071 | . . 3 ⊢ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
3 | reliun 5840 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | |
4 | 2, 3 | mpbir 231 | . 2 ⊢ Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
5 | cnextfrel.1 | . . . 4 ⊢ 𝐶 = ∪ 𝐽 | |
6 | cnextfrel.2 | . . . 4 ⊢ 𝐵 = ∪ 𝐾 | |
7 | 5, 6 | cnextfval 24093 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
8 | 7 | releqd 5802 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (Rel ((𝐽CnExt𝐾)‘𝐹) ↔ Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
9 | 4, 8 | mpbiri 258 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 {csn 4648 ∪ cuni 4931 ∪ ciun 5015 × cxp 5698 Rel wrel 5705 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ↾t crest 17482 Topctop 22922 clsccl 23049 neicnei 23128 fLimf cflf 23966 CnExtccnext 24090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-pm 8889 df-cnext 24091 |
This theorem is referenced by: cnextfun 24095 |
Copyright terms: Public domain | W3C validator |