| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnextrel | Structured version Visualization version GIF version | ||
| Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
| Ref | Expression |
|---|---|
| cnextfrel.1 | ⊢ 𝐶 = ∪ 𝐽 |
| cnextfrel.2 | ⊢ 𝐵 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cnextrel | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relxp 5683 | . . . 4 ⊢ Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) | |
| 2 | 1 | rgenw 3054 | . . 3 ⊢ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
| 3 | reliun 5806 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | |
| 4 | 2, 3 | mpbir 231 | . 2 ⊢ Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
| 5 | cnextfrel.1 | . . . 4 ⊢ 𝐶 = ∪ 𝐽 | |
| 6 | cnextfrel.2 | . . . 4 ⊢ 𝐵 = ∪ 𝐾 | |
| 7 | 5, 6 | cnextfval 24016 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
| 8 | 7 | releqd 5768 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (Rel ((𝐽CnExt𝐾)‘𝐹) ↔ Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
| 9 | 4, 8 | mpbiri 258 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 {csn 4606 ∪ cuni 4887 ∪ ciun 4971 × cxp 5663 Rel wrel 5670 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ↾t crest 17436 Topctop 22847 clsccl 22972 neicnei 23051 fLimf cflf 23889 CnExtccnext 24013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-pm 8851 df-cnext 24014 |
| This theorem is referenced by: cnextfun 24018 |
| Copyright terms: Public domain | W3C validator |