Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnextrel | Structured version Visualization version GIF version |
Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.) |
Ref | Expression |
---|---|
cnextfrel.1 | ⊢ 𝐶 = ∪ 𝐽 |
cnextfrel.2 | ⊢ 𝐵 = ∪ 𝐾 |
Ref | Expression |
---|---|
cnextrel | ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp 5607 | . . . 4 ⊢ Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) | |
2 | 1 | rgenw 3076 | . . 3 ⊢ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
3 | reliun 5726 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) ↔ ∀𝑥 ∈ ((cls‘𝐽)‘𝐴)Rel ({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) | |
4 | 2, 3 | mpbir 230 | . 2 ⊢ Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)) |
5 | cnextfrel.1 | . . . 4 ⊢ 𝐶 = ∪ 𝐽 | |
6 | cnextfrel.2 | . . . 4 ⊢ 𝐵 = ∪ 𝐾 | |
7 | 5, 6 | cnextfval 23213 | . . 3 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → ((𝐽CnExt𝐾)‘𝐹) = ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹))) |
8 | 7 | releqd 5689 | . 2 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → (Rel ((𝐽CnExt𝐾)‘𝐹) ↔ Rel ∪ 𝑥 ∈ ((cls‘𝐽)‘𝐴)({𝑥} × ((𝐾 fLimf (((nei‘𝐽)‘{𝑥}) ↾t 𝐴))‘𝐹)))) |
9 | 4, 8 | mpbiri 257 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟶𝐵 ∧ 𝐴 ⊆ 𝐶)) → Rel ((𝐽CnExt𝐾)‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 {csn 4561 ∪ cuni 4839 ∪ ciun 4924 × cxp 5587 Rel wrel 5594 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 clsccl 22169 neicnei 22248 fLimf cflf 23086 CnExtccnext 23210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-pm 8618 df-cnext 23211 |
This theorem is referenced by: cnextfun 23215 |
Copyright terms: Public domain | W3C validator |