MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextrel Structured version   Visualization version   GIF version

Theorem cnextrel 23437
Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.)
Hypotheses
Ref Expression
cnextfrel.1 𝐢 = βˆͺ 𝐽
cnextfrel.2 𝐡 = βˆͺ 𝐾
Assertion
Ref Expression
cnextrel (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ Rel ((𝐽CnExt𝐾)β€˜πΉ))

Proof of Theorem cnextrel
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 relxp 5655 . . . 4 Rel ({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))
21rgenw 3065 . . 3 βˆ€π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)Rel ({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))
3 reliun 5776 . . 3 (Rel βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ)) ↔ βˆ€π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)Rel ({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ)))
42, 3mpbir 230 . 2 Rel βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))
5 cnextfrel.1 . . . 4 𝐢 = βˆͺ 𝐽
6 cnextfrel.2 . . . 4 𝐡 = βˆͺ 𝐾
75, 6cnextfval 23436 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ ((𝐽CnExt𝐾)β€˜πΉ) = βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ)))
87releqd 5738 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ (Rel ((𝐽CnExt𝐾)β€˜πΉ) ↔ Rel βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))))
94, 8mpbiri 258 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ Rel ((𝐽CnExt𝐾)β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061   βŠ† wss 3914  {csn 4590  βˆͺ cuni 4869  βˆͺ ciun 4958   Γ— cxp 5635  Rel wrel 5642  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   β†Ύt crest 17310  Topctop 22265  clsccl 22392  neicnei 22471   fLimf cflf 23309  CnExtccnext 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-pm 8774  df-cnext 23434
This theorem is referenced by:  cnextfun  23438
  Copyright terms: Public domain W3C validator