MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextrel Structured version   Visualization version   GIF version

Theorem cnextrel 23566
Description: In the general case, a continuous extension is a relation. (Contributed by Thierry Arnoux, 20-Dec-2017.)
Hypotheses
Ref Expression
cnextfrel.1 𝐢 = βˆͺ 𝐽
cnextfrel.2 𝐡 = βˆͺ 𝐾
Assertion
Ref Expression
cnextrel (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ Rel ((𝐽CnExt𝐾)β€˜πΉ))

Proof of Theorem cnextrel
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 relxp 5694 . . . 4 Rel ({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))
21rgenw 3065 . . 3 βˆ€π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)Rel ({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))
3 reliun 5816 . . 3 (Rel βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ)) ↔ βˆ€π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)Rel ({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ)))
42, 3mpbir 230 . 2 Rel βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))
5 cnextfrel.1 . . . 4 𝐢 = βˆͺ 𝐽
6 cnextfrel.2 . . . 4 𝐡 = βˆͺ 𝐾
75, 6cnextfval 23565 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ ((𝐽CnExt𝐾)β€˜πΉ) = βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ)))
87releqd 5778 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ (Rel ((𝐽CnExt𝐾)β€˜πΉ) ↔ Rel βˆͺ π‘₯ ∈ ((clsβ€˜π½)β€˜π΄)({π‘₯} Γ— ((𝐾 fLimf (((neiβ€˜π½)β€˜{π‘₯}) β†Ύt 𝐴))β€˜πΉ))))
94, 8mpbiri 257 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝐴⟢𝐡 ∧ 𝐴 βŠ† 𝐢)) β†’ Rel ((𝐽CnExt𝐾)β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  {csn 4628  βˆͺ cuni 4908  βˆͺ ciun 4997   Γ— cxp 5674  Rel wrel 5681  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408   β†Ύt crest 17365  Topctop 22394  clsccl 22521  neicnei 22600   fLimf cflf 23438  CnExtccnext 23562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-pm 8822  df-cnext 23563
This theorem is referenced by:  cnextfun  23567
  Copyright terms: Public domain W3C validator