![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposfo2 | Structured version Visualization version GIF version |
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfo2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfn2 8258 | . . . 4 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | |
2 | 1 | adantrd 490 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn ◡𝐴)) |
3 | fndm 6660 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | releqd 5782 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
5 | 4 | biimparc 478 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → Rel dom 𝐹) |
6 | rntpos 8249 | . . . . . . 7 ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹) |
8 | 7 | eqeq1d 2729 | . . . . 5 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵)) |
9 | 8 | biimprd 247 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵)) |
10 | 9 | expimpd 452 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵)) |
11 | 2, 10 | jcad 511 | . 2 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵))) |
12 | df-fo 6557 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
13 | df-fo 6557 | . 2 ⊢ (tpos 𝐹:◡𝐴–onto→𝐵 ↔ (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵)) | |
14 | 11, 12, 13 | 3imtr4g 295 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ◡ccnv 5679 dom cdm 5680 ran crn 5681 Rel wrel 5685 Fn wfn 6546 –onto→wfo 6549 tpos ctpos 8235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-fo 6557 df-fv 6559 df-tpos 8236 |
This theorem is referenced by: tposf2 8260 tposf1o2 8262 tposfo 8263 oppglsm 19602 |
Copyright terms: Public domain | W3C validator |