MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo2 Structured version   Visualization version   GIF version

Theorem tposfo2 8188
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 8187 . . . 4 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
21adantrd 491 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn 𝐴))
3 fndm 6592 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43releqd 5725 . . . . . . . 8 (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
54biimparc 479 . . . . . . 7 ((Rel 𝐴𝐹 Fn 𝐴) → Rel dom 𝐹)
6 rntpos 8178 . . . . . . 7 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
75, 6syl 17 . . . . . 6 ((Rel 𝐴𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹)
87eqeq1d 2735 . . . . 5 ((Rel 𝐴𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵))
98biimprd 248 . . . 4 ((Rel 𝐴𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵))
109expimpd 453 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵))
112, 10jcad 512 . 2 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵)))
12 df-fo 6495 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
13 df-fo 6495 . 2 (tpos 𝐹:𝐴onto𝐵 ↔ (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵))
1411, 12, 133imtr4g 296 1 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  ccnv 5620  dom cdm 5621  ran crn 5622  Rel wrel 5626   Fn wfn 6484  ontowfo 6487  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-fo 6495  df-fv 6497  df-tpos 8165
This theorem is referenced by:  tposf2  8189  tposf1o2  8191  tposfo  8192  oppglsm  19562
  Copyright terms: Public domain W3C validator