![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tposfo2 | Structured version Visualization version GIF version |
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfo2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfn2 8272 | . . . 4 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | |
2 | 1 | adantrd 491 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn ◡𝐴)) |
3 | fndm 6672 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
4 | 3 | releqd 5791 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
5 | 4 | biimparc 479 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → Rel dom 𝐹) |
6 | rntpos 8263 | . . . . . . 7 ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | |
7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹) |
8 | 7 | eqeq1d 2737 | . . . . 5 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵)) |
9 | 8 | biimprd 248 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵)) |
10 | 9 | expimpd 453 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵)) |
11 | 2, 10 | jcad 512 | . 2 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵))) |
12 | df-fo 6569 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
13 | df-fo 6569 | . 2 ⊢ (tpos 𝐹:◡𝐴–onto→𝐵 ↔ (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵)) | |
14 | 11, 12, 13 | 3imtr4g 296 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ◡ccnv 5688 dom cdm 5689 ran crn 5690 Rel wrel 5694 Fn wfn 6558 –onto→wfo 6561 tpos ctpos 8249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fo 6569 df-fv 6571 df-tpos 8250 |
This theorem is referenced by: tposf2 8274 tposf1o2 8276 tposfo 8277 oppglsm 19675 |
Copyright terms: Public domain | W3C validator |