| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposfo2 | Structured version Visualization version GIF version | ||
| Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfo2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfn2 8273 | . . . 4 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | |
| 2 | 1 | adantrd 491 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn ◡𝐴)) |
| 3 | fndm 6671 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | releqd 5788 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
| 5 | 4 | biimparc 479 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → Rel dom 𝐹) |
| 6 | rntpos 8264 | . . . . . . 7 ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹) |
| 8 | 7 | eqeq1d 2739 | . . . . 5 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵)) |
| 9 | 8 | biimprd 248 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵)) |
| 10 | 9 | expimpd 453 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵)) |
| 11 | 2, 10 | jcad 512 | . 2 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵))) |
| 12 | df-fo 6567 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 13 | df-fo 6567 | . 2 ⊢ (tpos 𝐹:◡𝐴–onto→𝐵 ↔ (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵)) | |
| 14 | 11, 12, 13 | 3imtr4g 296 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ◡ccnv 5684 dom cdm 5685 ran crn 5686 Rel wrel 5690 Fn wfn 6556 –onto→wfo 6559 tpos ctpos 8250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fo 6567 df-fv 6569 df-tpos 8251 |
| This theorem is referenced by: tposf2 8275 tposf1o2 8277 tposfo 8278 oppglsm 19660 |
| Copyright terms: Public domain | W3C validator |