MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo2 Structured version   Visualization version   GIF version

Theorem tposfo2 8184
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 8183 . . . 4 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
21adantrd 493 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn 𝐴))
3 fndm 6609 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43releqd 5738 . . . . . . . 8 (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
54biimparc 481 . . . . . . 7 ((Rel 𝐴𝐹 Fn 𝐴) → Rel dom 𝐹)
6 rntpos 8174 . . . . . . 7 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
75, 6syl 17 . . . . . 6 ((Rel 𝐴𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹)
87eqeq1d 2735 . . . . 5 ((Rel 𝐴𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵))
98biimprd 248 . . . 4 ((Rel 𝐴𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵))
109expimpd 455 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵))
112, 10jcad 514 . 2 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵)))
12 df-fo 6506 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
13 df-fo 6506 . 2 (tpos 𝐹:𝐴onto𝐵 ↔ (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵))
1411, 12, 133imtr4g 296 1 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  ccnv 5636  dom cdm 5637  ran crn 5638  Rel wrel 5642   Fn wfn 6495  ontowfo 6498  tpos ctpos 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-fo 6506  df-fv 6508  df-tpos 8161
This theorem is referenced by:  tposf2  8185  tposf1o2  8187  tposfo  8188  oppglsm  19432
  Copyright terms: Public domain W3C validator