| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposfo2 | Structured version Visualization version GIF version | ||
| Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfo2 | ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfn2 8173 | . . . 4 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) | |
| 2 | 1 | adantrd 491 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn ◡𝐴)) |
| 3 | fndm 6579 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 4 | 3 | releqd 5714 | . . . . . . . 8 ⊢ (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
| 5 | 4 | biimparc 479 | . . . . . . 7 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → Rel dom 𝐹) |
| 6 | rntpos 8164 | . . . . . . 7 ⊢ (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹) |
| 8 | 7 | eqeq1d 2733 | . . . . 5 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵)) |
| 9 | 8 | biimprd 248 | . . . 4 ⊢ ((Rel 𝐴 ∧ 𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵)) |
| 10 | 9 | expimpd 453 | . . 3 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵)) |
| 11 | 2, 10 | jcad 512 | . 2 ⊢ (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵))) |
| 12 | df-fo 6482 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
| 13 | df-fo 6482 | . 2 ⊢ (tpos 𝐹:◡𝐴–onto→𝐵 ↔ (tpos 𝐹 Fn ◡𝐴 ∧ ran tpos 𝐹 = 𝐵)) | |
| 14 | 11, 12, 13 | 3imtr4g 296 | 1 ⊢ (Rel 𝐴 → (𝐹:𝐴–onto→𝐵 → tpos 𝐹:◡𝐴–onto→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ◡ccnv 5610 dom cdm 5611 ran crn 5612 Rel wrel 5616 Fn wfn 6471 –onto→wfo 6474 tpos ctpos 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-fo 6482 df-fv 6484 df-tpos 8151 |
| This theorem is referenced by: tposf2 8175 tposf1o2 8177 tposfo 8178 oppglsm 19549 |
| Copyright terms: Public domain | W3C validator |