MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo2 Structured version   Visualization version   GIF version

Theorem tposfo2 8232
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 8231 . . . 4 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
21adantrd 491 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn 𝐴))
3 fndm 6645 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43releqd 5771 . . . . . . . 8 (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
54biimparc 479 . . . . . . 7 ((Rel 𝐴𝐹 Fn 𝐴) → Rel dom 𝐹)
6 rntpos 8222 . . . . . . 7 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
75, 6syl 17 . . . . . 6 ((Rel 𝐴𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹)
87eqeq1d 2728 . . . . 5 ((Rel 𝐴𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵))
98biimprd 247 . . . 4 ((Rel 𝐴𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵))
109expimpd 453 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵))
112, 10jcad 512 . 2 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵)))
12 df-fo 6542 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
13 df-fo 6542 . 2 (tpos 𝐹:𝐴onto𝐵 ↔ (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵))
1411, 12, 133imtr4g 296 1 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  ccnv 5668  dom cdm 5669  ran crn 5670  Rel wrel 5674   Fn wfn 6531  ontowfo 6534  tpos ctpos 8208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-fo 6542  df-fv 6544  df-tpos 8209
This theorem is referenced by:  tposf2  8233  tposf1o2  8235  tposfo  8236  oppglsm  19560
  Copyright terms: Public domain W3C validator