MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposfo2 Structured version   Visualization version   GIF version

Theorem tposfo2 8228
Description: Condition for a surjective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfo2 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))

Proof of Theorem tposfo2
StepHypRef Expression
1 tposfn2 8227 . . . 4 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
21adantrd 491 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → tpos 𝐹 Fn 𝐴))
3 fndm 6621 . . . . . . . . 9 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
43releqd 5741 . . . . . . . 8 (𝐹 Fn 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
54biimparc 479 . . . . . . 7 ((Rel 𝐴𝐹 Fn 𝐴) → Rel dom 𝐹)
6 rntpos 8218 . . . . . . 7 (Rel dom 𝐹 → ran tpos 𝐹 = ran 𝐹)
75, 6syl 17 . . . . . 6 ((Rel 𝐴𝐹 Fn 𝐴) → ran tpos 𝐹 = ran 𝐹)
87eqeq1d 2731 . . . . 5 ((Rel 𝐴𝐹 Fn 𝐴) → (ran tpos 𝐹 = 𝐵 ↔ ran 𝐹 = 𝐵))
98biimprd 248 . . . 4 ((Rel 𝐴𝐹 Fn 𝐴) → (ran 𝐹 = 𝐵 → ran tpos 𝐹 = 𝐵))
109expimpd 453 . . 3 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → ran tpos 𝐹 = 𝐵))
112, 10jcad 512 . 2 (Rel 𝐴 → ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵)))
12 df-fo 6517 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
13 df-fo 6517 . 2 (tpos 𝐹:𝐴onto𝐵 ↔ (tpos 𝐹 Fn 𝐴 ∧ ran tpos 𝐹 = 𝐵))
1411, 12, 133imtr4g 296 1 (Rel 𝐴 → (𝐹:𝐴onto𝐵 → tpos 𝐹:𝐴onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  ccnv 5637  dom cdm 5638  ran crn 5639  Rel wrel 5643   Fn wfn 6506  ontowfo 6509  tpos ctpos 8204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fo 6517  df-fv 6519  df-tpos 8205
This theorem is referenced by:  tposf2  8229  tposf1o2  8231  tposfo  8232  oppglsm  19572
  Copyright terms: Public domain W3C validator