MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0rel Structured version   Visualization version   GIF version

Theorem relexp0rel 14983
Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexp0rel (𝑅𝑉 → Rel (𝑅𝑟0))

Proof of Theorem relexp0rel
StepHypRef Expression
1 relres 6010 . 2 Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅))
2 relexp0g 14968 . . 3 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
32releqd 5778 . 2 (𝑅𝑉 → (Rel (𝑅𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
41, 3mpbiri 257 1 (𝑅𝑉 → Rel (𝑅𝑟0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cun 3946   I cid 5573  dom cdm 5676  ran crn 5677  cres 5678  Rel wrel 5681  (class class class)co 7408  0cc0 11109  𝑟crelexp 14965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-n0 12472  df-relexp 14966
This theorem is referenced by:  relexprelg  14984  relexpaddg  14999
  Copyright terms: Public domain W3C validator