Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexp0rel | Structured version Visualization version GIF version |
Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexp0rel | ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5880 | . 2 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
2 | relexp0g 14585 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
3 | 2 | releqd 5650 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Rel (𝑅↑𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
4 | 1, 3 | mpbiri 261 | 1 ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∪ cun 3864 I cid 5454 dom cdm 5551 ran crn 5552 ↾ cres 5553 Rel wrel 5556 (class class class)co 7213 0cc0 10729 ↑𝑟crelexp 14582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-mulcl 10791 ax-i2m1 10797 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-iota 6338 df-fun 6382 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-n0 12091 df-relexp 14583 |
This theorem is referenced by: relexprelg 14601 relexpaddg 14616 |
Copyright terms: Public domain | W3C validator |