![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relexp0rel | Structured version Visualization version GIF version |
Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexp0rel | ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 6030 | . 2 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
2 | relexp0g 15067 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
3 | 2 | releqd 5795 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Rel (𝑅↑𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∪ cun 3964 I cid 5586 dom cdm 5693 ran crn 5694 ↾ cres 5695 Rel wrel 5698 (class class class)co 7438 0cc0 11162 ↑𝑟crelexp 15064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-mulcl 11224 ax-i2m1 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-n0 12534 df-relexp 15065 |
This theorem is referenced by: relexprelg 15083 relexpaddg 15098 |
Copyright terms: Public domain | W3C validator |