| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relexp0rel | Structured version Visualization version GIF version | ||
| Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
| Ref | Expression |
|---|---|
| relexp0rel | ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5965 | . 2 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
| 2 | relexp0g 14964 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
| 3 | 2 | releqd 5733 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Rel (𝑅↑𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∪ cun 3909 I cid 5525 dom cdm 5631 ran crn 5632 ↾ cres 5633 Rel wrel 5636 (class class class)co 7369 0cc0 11044 ↑𝑟crelexp 14961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-n0 12419 df-relexp 14962 |
| This theorem is referenced by: relexprelg 14980 relexpaddg 14995 |
| Copyright terms: Public domain | W3C validator |