MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexp0rel Structured version   Visualization version   GIF version

Theorem relexp0rel 14944
Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexp0rel (𝑅𝑉 → Rel (𝑅𝑟0))

Proof of Theorem relexp0rel
StepHypRef Expression
1 relres 5953 . 2 Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅))
2 relexp0g 14929 . . 3 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
32releqd 5718 . 2 (𝑅𝑉 → (Rel (𝑅𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
41, 3mpbiri 258 1 (𝑅𝑉 → Rel (𝑅𝑟0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cun 3895   I cid 5508  dom cdm 5614  ran crn 5615  cres 5616  Rel wrel 5619  (class class class)co 7346  0cc0 11006  𝑟crelexp 14926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-mulcl 11068  ax-i2m1 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-n0 12382  df-relexp 14927
This theorem is referenced by:  relexprelg  14945  relexpaddg  14960
  Copyright terms: Public domain W3C validator