Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relexp0rel | Structured version Visualization version GIF version |
Description: The exponentiation of a class to zero is a relation. (Contributed by RP, 23-May-2020.) |
Ref | Expression |
---|---|
relexp0rel | ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5920 | . 2 ⊢ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)) | |
2 | relexp0g 14733 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))) | |
3 | 2 | releqd 5689 | . 2 ⊢ (𝑅 ∈ 𝑉 → (Rel (𝑅↑𝑟0) ↔ Rel ( I ↾ (dom 𝑅 ∪ ran 𝑅)))) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ (𝑅 ∈ 𝑉 → Rel (𝑅↑𝑟0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∪ cun 3885 I cid 5488 dom cdm 5589 ran crn 5590 ↾ cres 5591 Rel wrel 5594 (class class class)co 7275 0cc0 10871 ↑𝑟crelexp 14730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-n0 12234 df-relexp 14731 |
This theorem is referenced by: relexprelg 14749 relexpaddg 14764 |
Copyright terms: Public domain | W3C validator |