Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfae Structured version   Visualization version   GIF version

Theorem relfae 32513
Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
relfae ((𝑅 ∈ V ∧ 𝑀 ran measures) → Rel (𝑅~ a.e.𝑀))

Proof of Theorem relfae
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5764 . 2 Rel {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}
2 faeval 32512 . . 3 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
32releqd 5721 . 2 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (Rel (𝑅~ a.e.𝑀) ↔ Rel {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}))
41, 3mpbiri 257 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → Rel (𝑅~ a.e.𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  {crab 3403  Vcvv 3441   cuni 4853   class class class wbr 5093  {copab 5155  dom cdm 5621  ran crn 5622  Rel wrel 5626  cfv 6480  (class class class)co 7338  m cmap 8687  measurescmeas 32461  a.e.cae 32503  ~ a.e.cfae 32504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6432  df-fun 6482  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-fae 32511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator