Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relfae | Structured version Visualization version GIF version |
Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
relfae | ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabv 5764 | . 2 ⊢ Rel {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} | |
2 | faeval 32512 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) | |
3 | 2 | releqd 5721 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (Rel (𝑅~ a.e.𝑀) ↔ Rel {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)})) |
4 | 1, 3 | mpbiri 257 | 1 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 {crab 3403 Vcvv 3441 ∪ cuni 4853 class class class wbr 5093 {copab 5155 dom cdm 5621 ran crn 5622 Rel wrel 5626 ‘cfv 6480 (class class class)co 7338 ↑m cmap 8687 measurescmeas 32461 a.e.cae 32503 ~ a.e.cfae 32504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6432 df-fun 6482 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-fae 32511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |