![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relfae | Structured version Visualization version GIF version |
Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
Ref | Expression |
---|---|
relfae | ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 5495 | . 2 ⊢ Rel {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} | |
2 | faeval 30915 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) | |
3 | 2 | releqd 5453 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (Rel (𝑅~ a.e.𝑀) ↔ Rel {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑𝑚 ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)})) |
4 | 1, 3 | mpbiri 250 | 1 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 {crab 3094 Vcvv 3398 ∪ cuni 4673 class class class wbr 4888 {copab 4950 dom cdm 5357 ran crn 5358 Rel wrel 5362 ‘cfv 6137 (class class class)co 6924 ↑𝑚 cmap 8142 measurescmeas 30864 a.e.cae 30906 ~ a.e.cfae 30907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-iota 6101 df-fun 6139 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-fae 30914 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |