| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relfae | Structured version Visualization version GIF version | ||
| Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| Ref | Expression |
|---|---|
| relfae | ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5784 | . 2 ⊢ Rel {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)} | |
| 2 | faeval 34236 | . . 3 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑅~ a.e.𝑀) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)}) | |
| 3 | 2 | releqd 5741 | . 2 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (Rel (𝑅~ a.e.𝑀) ↔ Rel {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (dom 𝑅 ↑m ∪ dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅 ↑m ∪ dom 𝑀)) ∧ {𝑥 ∈ ∪ dom 𝑀 ∣ (𝑓‘𝑥)𝑅(𝑔‘𝑥)}a.e.𝑀)})) |
| 4 | 1, 3 | mpbiri 258 | 1 ⊢ ((𝑅 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → Rel (𝑅~ a.e.𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3405 Vcvv 3447 ∪ cuni 4871 class class class wbr 5107 {copab 5169 dom cdm 5638 ran crn 5639 Rel wrel 5643 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 measurescmeas 34185 a.e.cae 34227 ~ a.e.cfae 34228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-fae 34235 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |