Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relfae Structured version   Visualization version   GIF version

Theorem relfae 34237
Description: The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.)
Assertion
Ref Expression
relfae ((𝑅 ∈ V ∧ 𝑀 ran measures) → Rel (𝑅~ a.e.𝑀))

Proof of Theorem relfae
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopabv 5784 . 2 Rel {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}
2 faeval 34236 . . 3 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
32releqd 5741 . 2 ((𝑅 ∈ V ∧ 𝑀 ran measures) → (Rel (𝑅~ a.e.𝑀) ↔ Rel {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)}))
41, 3mpbiri 258 1 ((𝑅 ∈ V ∧ 𝑀 ran measures) → Rel (𝑅~ a.e.𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3405  Vcvv 3447   cuni 4871   class class class wbr 5107  {copab 5169  dom cdm 5638  ran crn 5639  Rel wrel 5643  cfv 6511  (class class class)co 7387  m cmap 8799  measurescmeas 34185  a.e.cae 34227  ~ a.e.cfae 34228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fae 34235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator