MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Structured version   Visualization version   GIF version

Theorem erinxp 8731
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r (𝜑𝑅 Er 𝐴)
erinxp.a (𝜑𝐵𝐴)
Assertion
Ref Expression
erinxp (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Proof of Theorem erinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5771 . . 3 Rel (𝑅 ∩ (𝐵 × 𝐵))
21a1i 11 . 2 (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵)))
3 simpr 486 . . . . 5 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦)
4 brinxp2 5710 . . . . 5 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
53, 4sylib 217 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
65simplrd 769 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝐵)
75simplld 767 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝐵)
8 erinxp.r . . . . 5 (𝜑𝑅 Er 𝐴)
98adantr 482 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴)
105simprd 497 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦)
119, 10ersym 8661 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥)
12 brinxp2 5710 . . 3 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ ((𝑦𝐵𝑥𝐵) ∧ 𝑦𝑅𝑥))
136, 7, 11, 12syl21anbrc 1345 . 2 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥)
147adantrr 716 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝐵)
15 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)
16 brinxp2 5710 . . . . 5 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1715, 16sylib 217 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1817simplrd 769 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧𝐵)
198adantr 482 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴)
2010adantrr 716 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦)
2117simprd 497 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧)
2219, 20, 21ertrd 8665 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧)
23 brinxp2 5710 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑥𝐵𝑧𝐵) ∧ 𝑥𝑅𝑧))
2414, 18, 22, 23syl21anbrc 1345 . 2 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧)
258adantr 482 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Er 𝐴)
26 erinxp.a . . . . . . 7 (𝜑𝐵𝐴)
2726sselda 3945 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
2825, 27erref 8669 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝑅𝑥)
2928ex 414 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑅𝑥))
3029pm4.71rd 564 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝑅𝑥𝑥𝐵)))
31 brin 5158 . . . 4 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥))
32 brxp 5682 . . . . . 6 (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥𝐵𝑥𝐵))
33 anidm 566 . . . . . 6 ((𝑥𝐵𝑥𝐵) ↔ 𝑥𝐵)
3432, 33bitri 275 . . . . 5 (𝑥(𝐵 × 𝐵)𝑥𝑥𝐵)
3534anbi2i 624 . . . 4 ((𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥𝑥𝐵))
3631, 35bitri 275 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥𝐵))
3730, 36bitr4di 289 . 2 (𝜑 → (𝑥𝐵𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥))
382, 13, 24, 37iserd 8675 1 (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  cin 3910  wss 3911   class class class wbr 5106   × cxp 5632  Rel wrel 5639   Er wer 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-er 8649
This theorem is referenced by:  frgpuplem  19555  pi1buni  24406  pi1addf  24413  pi1addval  24414  pi1grplem  24415
  Copyright terms: Public domain W3C validator