MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Structured version   Visualization version   GIF version

Theorem erinxp 8104
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r (𝜑𝑅 Er 𝐴)
erinxp.a (𝜑𝐵𝐴)
Assertion
Ref Expression
erinxp (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Proof of Theorem erinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5485 . . 3 Rel (𝑅 ∩ (𝐵 × 𝐵))
21a1i 11 . 2 (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵)))
3 simpr 479 . . . . 5 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦)
4 brinxp2 5426 . . . . 5 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
53, 4sylib 210 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
65simplrd 760 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝐵)
75simplld 758 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝐵)
8 erinxp.r . . . . 5 (𝜑𝑅 Er 𝐴)
98adantr 474 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴)
105simprd 491 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦)
119, 10ersym 8038 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥)
12 brinxp2 5426 . . 3 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ ((𝑦𝐵𝑥𝐵) ∧ 𝑦𝑅𝑥))
136, 7, 11, 12syl21anbrc 1401 . 2 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥)
147adantrr 707 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝐵)
15 simprr 763 . . . . 5 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)
16 brinxp2 5426 . . . . 5 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1715, 16sylib 210 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1817simplrd 760 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧𝐵)
198adantr 474 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴)
2010adantrr 707 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦)
2117simprd 491 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧)
2219, 20, 21ertrd 8042 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧)
23 brinxp2 5426 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑥𝐵𝑧𝐵) ∧ 𝑥𝑅𝑧))
2414, 18, 22, 23syl21anbrc 1401 . 2 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧)
258adantr 474 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Er 𝐴)
26 erinxp.a . . . . . . 7 (𝜑𝐵𝐴)
2726sselda 3821 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
2825, 27erref 8046 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝑅𝑥)
2928ex 403 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑅𝑥))
3029pm4.71rd 558 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝑅𝑥𝑥𝐵)))
31 brin 4938 . . . 4 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥))
32 brxp 5401 . . . . . 6 (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥𝐵𝑥𝐵))
33 anidm 560 . . . . . 6 ((𝑥𝐵𝑥𝐵) ↔ 𝑥𝐵)
3432, 33bitri 267 . . . . 5 (𝑥(𝐵 × 𝐵)𝑥𝑥𝐵)
3534anbi2i 616 . . . 4 ((𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥𝑥𝐵))
3631, 35bitri 267 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥𝐵))
3730, 36syl6bbr 281 . 2 (𝜑 → (𝑥𝐵𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥))
382, 13, 24, 37iserd 8052 1 (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  cin 3791  wss 3792   class class class wbr 4886   × cxp 5353  Rel wrel 5360   Er wer 8023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4887  df-opab 4949  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-er 8026
This theorem is referenced by:  frgpuplem  18571  pi1buni  23247  pi1addf  23254  pi1addval  23255  pi1grplem  23256
  Copyright terms: Public domain W3C validator