MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Structured version   Visualization version   GIF version

Theorem erinxp 8849
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r (𝜑𝑅 Er 𝐴)
erinxp.a (𝜑𝐵𝐴)
Assertion
Ref Expression
erinxp (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Proof of Theorem erinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5838 . . 3 Rel (𝑅 ∩ (𝐵 × 𝐵))
21a1i 11 . 2 (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵)))
3 simpr 484 . . . . 5 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦)
4 brinxp2 5777 . . . . 5 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
53, 4sylib 218 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
65simplrd 769 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝐵)
75simplld 767 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝐵)
8 erinxp.r . . . . 5 (𝜑𝑅 Er 𝐴)
98adantr 480 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴)
105simprd 495 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦)
119, 10ersym 8775 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥)
12 brinxp2 5777 . . 3 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ ((𝑦𝐵𝑥𝐵) ∧ 𝑦𝑅𝑥))
136, 7, 11, 12syl21anbrc 1344 . 2 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥)
147adantrr 716 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝐵)
15 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)
16 brinxp2 5777 . . . . 5 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1715, 16sylib 218 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1817simplrd 769 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧𝐵)
198adantr 480 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴)
2010adantrr 716 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦)
2117simprd 495 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧)
2219, 20, 21ertrd 8779 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧)
23 brinxp2 5777 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑥𝐵𝑧𝐵) ∧ 𝑥𝑅𝑧))
2414, 18, 22, 23syl21anbrc 1344 . 2 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧)
258adantr 480 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Er 𝐴)
26 erinxp.a . . . . . . 7 (𝜑𝐵𝐴)
2726sselda 4008 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
2825, 27erref 8783 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝑅𝑥)
2928ex 412 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑅𝑥))
3029pm4.71rd 562 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝑅𝑥𝑥𝐵)))
31 brin 5218 . . . 4 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥))
32 brxp 5749 . . . . . 6 (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥𝐵𝑥𝐵))
33 anidm 564 . . . . . 6 ((𝑥𝐵𝑥𝐵) ↔ 𝑥𝐵)
3432, 33bitri 275 . . . . 5 (𝑥(𝐵 × 𝐵)𝑥𝑥𝐵)
3534anbi2i 622 . . . 4 ((𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥𝑥𝐵))
3631, 35bitri 275 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥𝐵))
3730, 36bitr4di 289 . 2 (𝜑 → (𝑥𝐵𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥))
382, 13, 24, 37iserd 8789 1 (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  cin 3975  wss 3976   class class class wbr 5166   × cxp 5698  Rel wrel 5705   Er wer 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-er 8763
This theorem is referenced by:  frgpuplem  19814  pi1buni  25092  pi1addf  25099  pi1addval  25100  pi1grplem  25101
  Copyright terms: Public domain W3C validator