Step | Hyp | Ref
| Expression |
1 | | relinxp 5724 |
. . 3
⊢ Rel
(𝑅 ∩ (𝐵 × 𝐵)) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵))) |
3 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) |
4 | | brinxp2 5664 |
. . . . 5
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) |
5 | 3, 4 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)) |
6 | 5 | simplrd 767 |
. . 3
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦 ∈ 𝐵) |
7 | 5 | simplld 765 |
. . 3
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥 ∈ 𝐵) |
8 | | erinxp.r |
. . . . 5
⊢ (𝜑 → 𝑅 Er 𝐴) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴) |
10 | 5 | simprd 496 |
. . . 4
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦) |
11 | 9, 10 | ersym 8510 |
. . 3
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥) |
12 | | brinxp2 5664 |
. . 3
⊢ (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦𝑅𝑥)) |
13 | 6, 7, 11, 12 | syl21anbrc 1343 |
. 2
⊢ ((𝜑 ∧ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥) |
14 | 7 | adantrr 714 |
. . 3
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥 ∈ 𝐵) |
15 | | simprr 770 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧) |
16 | | brinxp2 5664 |
. . . . 5
⊢ (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑦𝑅𝑧)) |
17 | 15, 16 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑦𝑅𝑧)) |
18 | 17 | simplrd 767 |
. . 3
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧 ∈ 𝐵) |
19 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴) |
20 | 10 | adantrr 714 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦) |
21 | 17 | simprd 496 |
. . . 4
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧) |
22 | 19, 20, 21 | ertrd 8514 |
. . 3
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧) |
23 | | brinxp2 5664 |
. . 3
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ∧ 𝑥𝑅𝑧)) |
24 | 14, 18, 22, 23 | syl21anbrc 1343 |
. 2
⊢ ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ∧ 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧) |
25 | 8 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 Er 𝐴) |
26 | | erinxp.a |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
27 | 26 | sselda 3921 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
28 | 25, 27 | erref 8518 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥𝑅𝑥) |
29 | 28 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐵 → 𝑥𝑅𝑥)) |
30 | 29 | pm4.71rd 563 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ (𝑥𝑅𝑥 ∧ 𝑥 ∈ 𝐵))) |
31 | | brin 5126 |
. . . 4
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥 ∧ 𝑥(𝐵 × 𝐵)𝑥)) |
32 | | brxp 5636 |
. . . . . 6
⊢ (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) |
33 | | anidm 565 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐵) |
34 | 32, 33 | bitri 274 |
. . . . 5
⊢ (𝑥(𝐵 × 𝐵)𝑥 ↔ 𝑥 ∈ 𝐵) |
35 | 34 | anbi2i 623 |
. . . 4
⊢ ((𝑥𝑅𝑥 ∧ 𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥 ∧ 𝑥 ∈ 𝐵)) |
36 | 31, 35 | bitri 274 |
. . 3
⊢ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥 ∧ 𝑥 ∈ 𝐵)) |
37 | 30, 36 | bitr4di 289 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥)) |
38 | 2, 13, 24, 37 | iserd 8524 |
1
⊢ (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵) |