| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edg0iedg0 | Structured version Visualization version GIF version | ||
| Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edg0iedg0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| edg0iedg0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| edg0iedg0 | ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edg0iedg0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | edgval 28982 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | 1, 2 | eqtri 2753 | . . . 4 ⊢ 𝐸 = ran (iEdg‘𝐺) |
| 4 | 3 | eqeq1i 2735 | . . 3 ⊢ (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅) |
| 5 | 4 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
| 6 | edg0iedg0.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2739 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5903 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 8 | eqeq1i 2735 | . . 3 ⊢ (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅) |
| 10 | 9 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)) |
| 11 | funrel 6535 | . . 3 ⊢ (Fun 𝐼 → Rel 𝐼) | |
| 12 | relrn0 5938 | . . . 4 ⊢ (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅)) | |
| 13 | 12 | bicomd 223 | . . 3 ⊢ (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 15 | 5, 10, 14 | 3bitrd 305 | 1 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∅c0 4298 ran crn 5641 Rel wrel 5645 Fun wfun 6507 ‘cfv 6513 iEdgciedg 28930 Edgcedg 28980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fv 6521 df-edg 28981 |
| This theorem is referenced by: uhgriedg0edg0 29060 egrsubgr 29210 vtxduhgr0e 29412 |
| Copyright terms: Public domain | W3C validator |