MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0iedg0 Structured version   Visualization version   GIF version

Theorem edg0iedg0 27425
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.)
Hypotheses
Ref Expression
edg0iedg0.i 𝐼 = (iEdg‘𝐺)
edg0iedg0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
edg0iedg0 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))

Proof of Theorem edg0iedg0
StepHypRef Expression
1 edg0iedg0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 27419 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2766 . . . 4 𝐸 = ran (iEdg‘𝐺)
43eqeq1i 2743 . . 3 (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)
54a1i 11 . 2 (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅))
6 edg0iedg0.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76eqcomi 2747 . . . . 5 (iEdg‘𝐺) = 𝐼
87rneqi 5846 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
98eqeq1i 2743 . . 3 (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)
109a1i 11 . 2 (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅))
11 funrel 6451 . . 3 (Fun 𝐼 → Rel 𝐼)
12 relrn0 5878 . . . 4 (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅))
1312bicomd 222 . . 3 (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
1411, 13syl 17 . 2 (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
155, 10, 143bitrd 305 1 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  c0 4256  ran crn 5590  Rel wrel 5594  Fun wfun 6427  cfv 6433  iEdgciedg 27367  Edgcedg 27417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-edg 27418
This theorem is referenced by:  uhgriedg0edg0  27497  egrsubgr  27644  vtxduhgr0e  27845
  Copyright terms: Public domain W3C validator