Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edg0iedg0 | Structured version Visualization version GIF version |
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
Ref | Expression |
---|---|
edg0iedg0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
edg0iedg0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
edg0iedg0 | ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edg0iedg0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | edgval 27322 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
3 | 1, 2 | eqtri 2766 | . . . 4 ⊢ 𝐸 = ran (iEdg‘𝐺) |
4 | 3 | eqeq1i 2743 | . . 3 ⊢ (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅) |
5 | 4 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
6 | edg0iedg0.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
7 | 6 | eqcomi 2747 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
8 | 7 | rneqi 5835 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
9 | 8 | eqeq1i 2743 | . . 3 ⊢ (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅) |
10 | 9 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)) |
11 | funrel 6435 | . . 3 ⊢ (Fun 𝐼 → Rel 𝐼) | |
12 | relrn0 5867 | . . . 4 ⊢ (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅)) | |
13 | 12 | bicomd 222 | . . 3 ⊢ (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
14 | 11, 13 | syl 17 | . 2 ⊢ (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
15 | 5, 10, 14 | 3bitrd 304 | 1 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∅c0 4253 ran crn 5581 Rel wrel 5585 Fun wfun 6412 ‘cfv 6418 iEdgciedg 27270 Edgcedg 27320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-edg 27321 |
This theorem is referenced by: uhgriedg0edg0 27400 egrsubgr 27547 vtxduhgr0e 27748 |
Copyright terms: Public domain | W3C validator |