MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0iedg0 Structured version   Visualization version   GIF version

Theorem edg0iedg0 28988
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.)
Hypotheses
Ref Expression
edg0iedg0.i 𝐼 = (iEdg‘𝐺)
edg0iedg0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
edg0iedg0 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))

Proof of Theorem edg0iedg0
StepHypRef Expression
1 edg0iedg0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 28982 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2753 . . . 4 𝐸 = ran (iEdg‘𝐺)
43eqeq1i 2735 . . 3 (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)
54a1i 11 . 2 (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅))
6 edg0iedg0.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76eqcomi 2739 . . . . 5 (iEdg‘𝐺) = 𝐼
87rneqi 5903 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
98eqeq1i 2735 . . 3 (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)
109a1i 11 . 2 (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅))
11 funrel 6535 . . 3 (Fun 𝐼 → Rel 𝐼)
12 relrn0 5938 . . . 4 (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅))
1312bicomd 223 . . 3 (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
1411, 13syl 17 . 2 (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
155, 10, 143bitrd 305 1 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  c0 4298  ran crn 5641  Rel wrel 5645  Fun wfun 6507  cfv 6513  iEdgciedg 28930  Edgcedg 28980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fv 6521  df-edg 28981
This theorem is referenced by:  uhgriedg0edg0  29060  egrsubgr  29210  vtxduhgr0e  29412
  Copyright terms: Public domain W3C validator