MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0iedg0 Structured version   Visualization version   GIF version

Theorem edg0iedg0 29087
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.)
Hypotheses
Ref Expression
edg0iedg0.i 𝐼 = (iEdg‘𝐺)
edg0iedg0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
edg0iedg0 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))

Proof of Theorem edg0iedg0
StepHypRef Expression
1 edg0iedg0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 29081 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2763 . . . 4 𝐸 = ran (iEdg‘𝐺)
43eqeq1i 2740 . . 3 (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)
54a1i 11 . 2 (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅))
6 edg0iedg0.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76eqcomi 2744 . . . . 5 (iEdg‘𝐺) = 𝐼
87rneqi 5951 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
98eqeq1i 2740 . . 3 (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)
109a1i 11 . 2 (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅))
11 funrel 6585 . . 3 (Fun 𝐼 → Rel 𝐼)
12 relrn0 5986 . . . 4 (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅))
1312bicomd 223 . . 3 (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
1411, 13syl 17 . 2 (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
155, 10, 143bitrd 305 1 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  c0 4339  ran crn 5690  Rel wrel 5694  Fun wfun 6557  cfv 6563  iEdgciedg 29029  Edgcedg 29079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fv 6571  df-edg 29080
This theorem is referenced by:  uhgriedg0edg0  29159  egrsubgr  29309  vtxduhgr0e  29511
  Copyright terms: Public domain W3C validator