| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edg0iedg0 | Structured version Visualization version GIF version | ||
| Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| edg0iedg0.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| edg0iedg0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| edg0iedg0 | ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edg0iedg0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | edgval 29025 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 3 | 1, 2 | eqtri 2754 | . . . 4 ⊢ 𝐸 = ran (iEdg‘𝐺) |
| 4 | 3 | eqeq1i 2736 | . . 3 ⊢ (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅) |
| 5 | 4 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
| 6 | edg0iedg0.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 7 | 6 | eqcomi 2740 | . . . . 5 ⊢ (iEdg‘𝐺) = 𝐼 |
| 8 | 7 | rneqi 5877 | . . . 4 ⊢ ran (iEdg‘𝐺) = ran 𝐼 |
| 9 | 8 | eqeq1i 2736 | . . 3 ⊢ (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅) |
| 10 | 9 | a1i 11 | . 2 ⊢ (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)) |
| 11 | funrel 6498 | . . 3 ⊢ (Fun 𝐼 → Rel 𝐼) | |
| 12 | relrn0 5912 | . . . 4 ⊢ (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅)) | |
| 13 | 12 | bicomd 223 | . . 3 ⊢ (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 14 | 11, 13 | syl 17 | . 2 ⊢ (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅)) |
| 15 | 5, 10, 14 | 3bitrd 305 | 1 ⊢ (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∅c0 4283 ran crn 5617 Rel wrel 5621 Fun wfun 6475 ‘cfv 6481 iEdgciedg 28973 Edgcedg 29023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-edg 29024 |
| This theorem is referenced by: uhgriedg0edg0 29103 egrsubgr 29253 vtxduhgr0e 29455 |
| Copyright terms: Public domain | W3C validator |