MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0iedg0 Structured version   Visualization version   GIF version

Theorem edg0iedg0 27328
Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020.) (Revised by AV, 8-Dec-2021.)
Hypotheses
Ref Expression
edg0iedg0.i 𝐼 = (iEdg‘𝐺)
edg0iedg0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
edg0iedg0 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))

Proof of Theorem edg0iedg0
StepHypRef Expression
1 edg0iedg0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 27322 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2766 . . . 4 𝐸 = ran (iEdg‘𝐺)
43eqeq1i 2743 . . 3 (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅)
54a1i 11 . 2 (Fun 𝐼 → (𝐸 = ∅ ↔ ran (iEdg‘𝐺) = ∅))
6 edg0iedg0.i . . . . . 6 𝐼 = (iEdg‘𝐺)
76eqcomi 2747 . . . . 5 (iEdg‘𝐺) = 𝐼
87rneqi 5835 . . . 4 ran (iEdg‘𝐺) = ran 𝐼
98eqeq1i 2743 . . 3 (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅)
109a1i 11 . 2 (Fun 𝐼 → (ran (iEdg‘𝐺) = ∅ ↔ ran 𝐼 = ∅))
11 funrel 6435 . . 3 (Fun 𝐼 → Rel 𝐼)
12 relrn0 5867 . . . 4 (Rel 𝐼 → (𝐼 = ∅ ↔ ran 𝐼 = ∅))
1312bicomd 222 . . 3 (Rel 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
1411, 13syl 17 . 2 (Fun 𝐼 → (ran 𝐼 = ∅ ↔ 𝐼 = ∅))
155, 10, 143bitrd 304 1 (Fun 𝐼 → (𝐸 = ∅ ↔ 𝐼 = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  c0 4253  ran crn 5581  Rel wrel 5585  Fun wfun 6412  cfv 6418  iEdgciedg 27270  Edgcedg 27320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-edg 27321
This theorem is referenced by:  uhgriedg0edg0  27400  egrsubgr  27547  vtxduhgr0e  27748
  Copyright terms: Public domain W3C validator