Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > edg0usgr | Structured version Visualization version GIF version |
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
edg0usgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 27322 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | 2 | eqeq1d 2740 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
4 | funrel 6435 | . . . . . 6 ⊢ (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺)) | |
5 | relrn0 5867 | . . . . . . 7 ⊢ (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) | |
6 | 5 | bicomd 222 | . . . . . 6 ⊢ (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
8 | simpr 484 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ 𝑊) | |
9 | simpl 482 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → (iEdg‘𝐺) = ∅) | |
10 | 8, 9 | usgr0e 27506 | . . . . . 6 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ USGraph) |
11 | 10 | ex 412 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph)) |
12 | 7, 11 | syl6bi 252 | . . . 4 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph))) |
13 | 12 | com13 88 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
14 | 3, 13 | sylbid 239 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
15 | 14 | 3imp 1109 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ran crn 5581 Rel wrel 5585 Fun wfun 6412 ‘cfv 6418 iEdgciedg 27270 Edgcedg 27320 USGraphcusgr 27422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fv 6426 df-edg 27321 df-usgr 27424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |