![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > edg0usgr | Structured version Visualization version GIF version |
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.) |
Ref | Expression |
---|---|
edg0usgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval 28042 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
3 | 2 | eqeq1d 2735 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
4 | funrel 6519 | . . . . . 6 ⊢ (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺)) | |
5 | relrn0 5925 | . . . . . . 7 ⊢ (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) | |
6 | 5 | bicomd 222 | . . . . . 6 ⊢ (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
7 | 4, 6 | syl 17 | . . . . 5 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
8 | simpr 486 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ 𝑊) | |
9 | simpl 484 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → (iEdg‘𝐺) = ∅) | |
10 | 8, 9 | usgr0e 28226 | . . . . . 6 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ USGraph) |
11 | 10 | ex 414 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph)) |
12 | 7, 11 | syl6bi 253 | . . . 4 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph))) |
13 | 12 | com13 88 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
14 | 3, 13 | sylbid 239 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
15 | 14 | 3imp 1112 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∅c0 4283 ran crn 5635 Rel wrel 5639 Fun wfun 6491 ‘cfv 6497 iEdgciedg 27990 Edgcedg 28040 USGraphcusgr 28142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fv 6505 df-edg 28041 df-usgr 28144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |