| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > edg0usgr | Structured version Visualization version GIF version | ||
| Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.) |
| Ref | Expression |
|---|---|
| edg0usgr | ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | edgval 29029 | . . . . 5 ⊢ (Edg‘𝐺) = ran (iEdg‘𝐺) | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺)) |
| 3 | 2 | eqeq1d 2735 | . . 3 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) |
| 4 | funrel 6503 | . . . . . 6 ⊢ (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺)) | |
| 5 | relrn0 5916 | . . . . . . 7 ⊢ (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅)) | |
| 6 | 5 | bicomd 223 | . . . . . 6 ⊢ (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 8 | simpr 484 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ 𝑊) | |
| 9 | simpl 482 | . . . . . . 7 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → (iEdg‘𝐺) = ∅) | |
| 10 | 8, 9 | usgr0e 29216 | . . . . . 6 ⊢ (((iEdg‘𝐺) = ∅ ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ USGraph) |
| 11 | 10 | ex 412 | . . . . 5 ⊢ ((iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph)) |
| 12 | 7, 11 | biimtrdi 253 | . . . 4 ⊢ (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺 ∈ 𝑊 → 𝐺 ∈ USGraph))) |
| 13 | 12 | com13 88 | . . 3 ⊢ (𝐺 ∈ 𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
| 14 | 3, 13 | sylbid 240 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph))) |
| 15 | 14 | 3imp 1110 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∅c0 4282 ran crn 5620 Rel wrel 5624 Fun wfun 6480 ‘cfv 6486 iEdgciedg 28977 Edgcedg 29027 USGraphcusgr 29129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fv 6494 df-edg 29028 df-usgr 29131 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |