MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0usgr Structured version   Visualization version   GIF version

Theorem edg0usgr 29232
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
edg0usgr ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph)

Proof of Theorem edg0usgr
StepHypRef Expression
1 edgval 29028 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eqeq1d 2737 . . 3 (𝐺𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
4 funrel 6553 . . . . . 6 (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺))
5 relrn0 5952 . . . . . . 7 (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
65bicomd 223 . . . . . 6 (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
74, 6syl 17 . . . . 5 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
8 simpr 484 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺𝑊)
9 simpl 482 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → (iEdg‘𝐺) = ∅)
108, 9usgr0e 29215 . . . . . 6 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺 ∈ USGraph)
1110ex 412 . . . . 5 ((iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph))
127, 11biimtrdi 253 . . . 4 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph)))
1312com13 88 . . 3 (𝐺𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph)))
143, 13sylbid 240 . 2 (𝐺𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph)))
15143imp 1110 1 ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  c0 4308  ran crn 5655  Rel wrel 5659  Fun wfun 6525  cfv 6531  iEdgciedg 28976  Edgcedg 29026  USGraphcusgr 29128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fv 6539  df-edg 29027  df-usgr 29130
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator