MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0usgr Structured version   Visualization version   GIF version

Theorem edg0usgr 29040
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
edg0usgr ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph)

Proof of Theorem edg0usgr
StepHypRef Expression
1 edgval 28836 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eqeq1d 2729 . . 3 (𝐺𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
4 funrel 6564 . . . . . 6 (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺))
5 relrn0 5966 . . . . . . 7 (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
65bicomd 222 . . . . . 6 (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
74, 6syl 17 . . . . 5 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
8 simpr 484 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺𝑊)
9 simpl 482 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → (iEdg‘𝐺) = ∅)
108, 9usgr0e 29023 . . . . . 6 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺 ∈ USGraph)
1110ex 412 . . . . 5 ((iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph))
127, 11biimtrdi 252 . . . 4 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph)))
1312com13 88 . . 3 (𝐺𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph)))
143, 13sylbid 239 . 2 (𝐺𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph)))
15143imp 1109 1 ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  c0 4318  ran crn 5673  Rel wrel 5677  Fun wfun 6536  cfv 6542  iEdgciedg 28784  Edgcedg 28834  USGraphcusgr 28936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fv 6550  df-edg 28835  df-usgr 28938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator