MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  edg0usgr Structured version   Visualization version   GIF version

Theorem edg0usgr 27523
Description: A class without edges is a simple graph. Since ran 𝐹 = ∅ does not generally imply Fun 𝐹, but Fun (iEdg‘𝐺) is required for 𝐺 to be a simple graph, however, this must be provided as assertion. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
edg0usgr ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph)

Proof of Theorem edg0usgr
StepHypRef Expression
1 edgval 27322 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . 4 (𝐺𝑊 → (Edg‘𝐺) = ran (iEdg‘𝐺))
32eqeq1d 2740 . . 3 (𝐺𝑊 → ((Edg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
4 funrel 6435 . . . . . 6 (Fun (iEdg‘𝐺) → Rel (iEdg‘𝐺))
5 relrn0 5867 . . . . . . 7 (Rel (iEdg‘𝐺) → ((iEdg‘𝐺) = ∅ ↔ ran (iEdg‘𝐺) = ∅))
65bicomd 222 . . . . . 6 (Rel (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
74, 6syl 17 . . . . 5 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
8 simpr 484 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺𝑊)
9 simpl 482 . . . . . . 7 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → (iEdg‘𝐺) = ∅)
108, 9usgr0e 27506 . . . . . 6 (((iEdg‘𝐺) = ∅ ∧ 𝐺𝑊) → 𝐺 ∈ USGraph)
1110ex 412 . . . . 5 ((iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph))
127, 11syl6bi 252 . . . 4 (Fun (iEdg‘𝐺) → (ran (iEdg‘𝐺) = ∅ → (𝐺𝑊𝐺 ∈ USGraph)))
1312com13 88 . . 3 (𝐺𝑊 → (ran (iEdg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph)))
143, 13sylbid 239 . 2 (𝐺𝑊 → ((Edg‘𝐺) = ∅ → (Fun (iEdg‘𝐺) → 𝐺 ∈ USGraph)))
15143imp 1109 1 ((𝐺𝑊 ∧ (Edg‘𝐺) = ∅ ∧ Fun (iEdg‘𝐺)) → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  c0 4253  ran crn 5581  Rel wrel 5585  Fun wfun 6412  cfv 6418  iEdgciedg 27270  Edgcedg 27320  USGraphcusgr 27422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fv 6426  df-edg 27321  df-usgr 27424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator