Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnsn | Structured version Visualization version GIF version |
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
psgnsn.0 | ⊢ 𝐷 = {𝐴} |
psgnsn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnsn.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnsn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | 1 | gsum0 18283 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
3 | psgnsn.g | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐷) | |
4 | psgnsn.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
5 | psgnsn.0 | . . . . . . . 8 ⊢ 𝐷 = {𝐴} | |
6 | 3, 4, 5 | symg1bas 18913 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐵 = {{〈𝐴, 𝐴〉}}) |
7 | 6 | eleq2d 2824 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {{〈𝐴, 𝐴〉}})) |
8 | 7 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {{〈𝐴, 𝐴〉}}) |
9 | elsni 4575 | . . . . . 6 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → 𝑋 = {〈𝐴, 𝐴〉}) | |
10 | 5 | reseq2i 5877 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐷) = ( I ↾ {𝐴}) |
11 | snex 5349 | . . . . . . . . . . . . 13 ⊢ {𝐴} ∈ V | |
12 | 11 | snid 4594 | . . . . . . . . . . . 12 ⊢ {𝐴} ∈ {{𝐴}} |
13 | 5, 12 | eqeltri 2835 | . . . . . . . . . . 11 ⊢ 𝐷 ∈ {{𝐴}} |
14 | 3 | symgid 18924 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g‘𝐺)) |
15 | 13, 14 | mp1i 13 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝐺)) |
16 | restidsing 5951 | . . . . . . . . . . 11 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
17 | xpsng 6993 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
18 | 17 | anidms 566 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
19 | 16, 18 | eqtrid 2790 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ {𝐴}) = {〈𝐴, 𝐴〉}) |
20 | 10, 15, 19 | 3eqtr3a 2803 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
21 | 20 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
22 | id 22 | . . . . . . . . 9 ⊢ ({〈𝐴, 𝐴〉} = 𝑋 → {〈𝐴, 𝐴〉} = 𝑋) | |
23 | 22 | eqcoms 2746 | . . . . . . . 8 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → {〈𝐴, 𝐴〉} = 𝑋) |
24 | 21, 23 | sylan9eqr 2801 | . . . . . . 7 ⊢ ((𝑋 = {〈𝐴, 𝐴〉} ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵)) → (0g‘𝐺) = 𝑋) |
25 | 24 | ex 412 | . . . . . 6 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
27 | 8, 26 | mpcom 38 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋) |
28 | 2, 27 | eqtr2id 2792 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝐺 Σg ∅)) |
29 | 28 | fveq2d 6760 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑁‘(𝐺 Σg ∅))) |
30 | 5, 11 | eqeltri 2835 | . . . 4 ⊢ 𝐷 ∈ V |
31 | wrd0 14170 | . . . 4 ⊢ ∅ ∈ Word ∅ | |
32 | 30, 31 | pm3.2i 470 | . . 3 ⊢ (𝐷 ∈ V ∧ ∅ ∈ Word ∅) |
33 | 5 | fveq2i 6759 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{𝐴}) |
34 | pmtrsn 19042 | . . . . . . 7 ⊢ (pmTrsp‘{𝐴}) = ∅ | |
35 | 33, 34 | eqtri 2766 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = ∅ |
36 | 35 | rneqi 5835 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran ∅ |
37 | rn0 5824 | . . . . 5 ⊢ ran ∅ = ∅ | |
38 | 36, 37 | eqtr2i 2767 | . . . 4 ⊢ ∅ = ran (pmTrsp‘𝐷) |
39 | psgnsn.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
40 | 3, 38, 39 | psgnvalii 19032 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
41 | 32, 40 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
42 | hash0 14010 | . . . . 5 ⊢ (♯‘∅) = 0 | |
43 | 42 | oveq2i 7266 | . . . 4 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
44 | neg1cn 12017 | . . . . 5 ⊢ -1 ∈ ℂ | |
45 | exp0 13714 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
46 | 44, 45 | ax-mp 5 | . . . 4 ⊢ (-1↑0) = 1 |
47 | 43, 46 | eqtri 2766 | . . 3 ⊢ (-1↑(♯‘∅)) = 1 |
48 | 47 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (-1↑(♯‘∅)) = 1) |
49 | 29, 41, 48 | 3eqtrd 2782 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 {csn 4558 〈cop 4564 I cid 5479 × cxp 5578 ran crn 5581 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 -cneg 11136 ↑cexp 13710 ♯chash 13972 Word cword 14145 Basecbs 16840 0gc0g 17067 Σg cgsu 17068 SymGrpcsymg 18889 pmTrspcpmtr 18964 pmSgncpsgn 19012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-subg 18667 df-ghm 18747 df-gim 18790 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 |
This theorem is referenced by: m1detdiag 21654 |
Copyright terms: Public domain | W3C validator |