Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnsn | Structured version Visualization version GIF version |
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
psgnsn.0 | ⊢ 𝐷 = {𝐴} |
psgnsn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnsn.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnsn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2759 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | 1 | gsum0 17961 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
3 | psgnsn.g | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐷) | |
4 | psgnsn.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
5 | psgnsn.0 | . . . . . . . 8 ⊢ 𝐷 = {𝐴} | |
6 | 3, 4, 5 | symg1bas 18587 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐵 = {{〈𝐴, 𝐴〉}}) |
7 | 6 | eleq2d 2838 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {{〈𝐴, 𝐴〉}})) |
8 | 7 | biimpa 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {{〈𝐴, 𝐴〉}}) |
9 | elsni 4540 | . . . . . 6 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → 𝑋 = {〈𝐴, 𝐴〉}) | |
10 | 5 | reseq2i 5821 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐷) = ( I ↾ {𝐴}) |
11 | snex 5301 | . . . . . . . . . . . . 13 ⊢ {𝐴} ∈ V | |
12 | 11 | snid 4559 | . . . . . . . . . . . 12 ⊢ {𝐴} ∈ {{𝐴}} |
13 | 5, 12 | eqeltri 2849 | . . . . . . . . . . 11 ⊢ 𝐷 ∈ {{𝐴}} |
14 | 3 | symgid 18597 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g‘𝐺)) |
15 | 13, 14 | mp1i 13 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝐺)) |
16 | restidsing 5895 | . . . . . . . . . . 11 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
17 | xpsng 6893 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
18 | 17 | anidms 571 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
19 | 16, 18 | syl5eq 2806 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ {𝐴}) = {〈𝐴, 𝐴〉}) |
20 | 10, 15, 19 | 3eqtr3a 2818 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
21 | 20 | adantr 485 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
22 | id 22 | . . . . . . . . 9 ⊢ ({〈𝐴, 𝐴〉} = 𝑋 → {〈𝐴, 𝐴〉} = 𝑋) | |
23 | 22 | eqcoms 2767 | . . . . . . . 8 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → {〈𝐴, 𝐴〉} = 𝑋) |
24 | 21, 23 | sylan9eqr 2816 | . . . . . . 7 ⊢ ((𝑋 = {〈𝐴, 𝐴〉} ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵)) → (0g‘𝐺) = 𝑋) |
25 | 24 | ex 417 | . . . . . 6 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
27 | 8, 26 | mpcom 38 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋) |
28 | 2, 27 | syl5req 2807 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝐺 Σg ∅)) |
29 | 28 | fveq2d 6663 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑁‘(𝐺 Σg ∅))) |
30 | 5, 11 | eqeltri 2849 | . . . 4 ⊢ 𝐷 ∈ V |
31 | wrd0 13939 | . . . 4 ⊢ ∅ ∈ Word ∅ | |
32 | 30, 31 | pm3.2i 475 | . . 3 ⊢ (𝐷 ∈ V ∧ ∅ ∈ Word ∅) |
33 | 5 | fveq2i 6662 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{𝐴}) |
34 | pmtrsn 18715 | . . . . . . 7 ⊢ (pmTrsp‘{𝐴}) = ∅ | |
35 | 33, 34 | eqtri 2782 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = ∅ |
36 | 35 | rneqi 5779 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran ∅ |
37 | rn0 5768 | . . . . 5 ⊢ ran ∅ = ∅ | |
38 | 36, 37 | eqtr2i 2783 | . . . 4 ⊢ ∅ = ran (pmTrsp‘𝐷) |
39 | psgnsn.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
40 | 3, 38, 39 | psgnvalii 18705 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
41 | 32, 40 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
42 | hash0 13779 | . . . . 5 ⊢ (♯‘∅) = 0 | |
43 | 42 | oveq2i 7162 | . . . 4 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
44 | neg1cn 11789 | . . . . 5 ⊢ -1 ∈ ℂ | |
45 | exp0 13484 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
46 | 44, 45 | ax-mp 5 | . . . 4 ⊢ (-1↑0) = 1 |
47 | 43, 46 | eqtri 2782 | . . 3 ⊢ (-1↑(♯‘∅)) = 1 |
48 | 47 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (-1↑(♯‘∅)) = 1) |
49 | 29, 41, 48 | 3eqtrd 2798 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∅c0 4226 {csn 4523 〈cop 4529 I cid 5430 × cxp 5523 ran crn 5526 ↾ cres 5527 ‘cfv 6336 (class class class)co 7151 ℂcc 10574 0cc0 10576 1c1 10577 -cneg 10910 ↑cexp 13480 ♯chash 13741 Word cword 13914 Basecbs 16542 0gc0g 16772 Σg cgsu 16773 SymGrpcsymg 18563 pmTrspcpmtr 18637 pmSgncpsgn 18685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-ot 4532 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-tpos 7903 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9402 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-4 11740 df-5 11741 df-6 11742 df-7 11743 df-8 11744 df-9 11745 df-n0 11936 df-xnn0 12008 df-z 12022 df-uz 12284 df-rp 12432 df-fz 12941 df-fzo 13084 df-seq 13420 df-exp 13481 df-hash 13742 df-word 13915 df-lsw 13963 df-concat 13971 df-s1 13998 df-substr 14051 df-pfx 14081 df-splice 14160 df-reverse 14169 df-s2 14258 df-struct 16544 df-ndx 16545 df-slot 16546 df-base 16548 df-sets 16549 df-ress 16550 df-plusg 16637 df-tset 16643 df-0g 16774 df-gsum 16775 df-mre 16916 df-mrc 16917 df-acs 16919 df-mgm 17919 df-sgrp 17968 df-mnd 17979 df-mhm 18023 df-submnd 18024 df-efmnd 18101 df-grp 18173 df-minusg 18174 df-subg 18344 df-ghm 18424 df-gim 18467 df-oppg 18542 df-symg 18564 df-pmtr 18638 df-psgn 18687 |
This theorem is referenced by: m1detdiag 21298 |
Copyright terms: Public domain | W3C validator |