MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnsn Structured version   Visualization version   GIF version

Theorem psgnsn 19436
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
psgnsn.0 𝐷 = {𝐴}
psgnsn.g 𝐺 = (SymGrp‘𝐷)
psgnsn.b 𝐵 = (Base‘𝐺)
psgnsn.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnsn ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)

Proof of Theorem psgnsn
StepHypRef Expression
1 eqid 2731 . . . . 5 (0g𝐺) = (0g𝐺)
21gsum0 18615 . . . 4 (𝐺 Σg ∅) = (0g𝐺)
3 psgnsn.g . . . . . . . 8 𝐺 = (SymGrp‘𝐷)
4 psgnsn.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 psgnsn.0 . . . . . . . 8 𝐷 = {𝐴}
63, 4, 5symg1bas 19306 . . . . . . 7 (𝐴𝑉𝐵 = {{⟨𝐴, 𝐴⟩}})
76eleq2d 2818 . . . . . 6 (𝐴𝑉 → (𝑋𝐵𝑋 ∈ {{⟨𝐴, 𝐴⟩}}))
87biimpa 476 . . . . 5 ((𝐴𝑉𝑋𝐵) → 𝑋 ∈ {{⟨𝐴, 𝐴⟩}})
9 elsni 4645 . . . . . 6 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → 𝑋 = {⟨𝐴, 𝐴⟩})
105reseq2i 5978 . . . . . . . . . 10 ( I ↾ 𝐷) = ( I ↾ {𝐴})
11 snex 5431 . . . . . . . . . . . . 13 {𝐴} ∈ V
1211snid 4664 . . . . . . . . . . . 12 {𝐴} ∈ {{𝐴}}
135, 12eqeltri 2828 . . . . . . . . . . 11 𝐷 ∈ {{𝐴}}
143symgid 19317 . . . . . . . . . . 11 (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g𝐺))
1513, 14mp1i 13 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ 𝐷) = (0g𝐺))
16 restidsing 6052 . . . . . . . . . . 11 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
17 xpsng 7139 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1916, 18eqtrid 2783 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ {𝐴}) = {⟨𝐴, 𝐴⟩})
2010, 15, 193eqtr3a 2795 . . . . . . . . 9 (𝐴𝑉 → (0g𝐺) = {⟨𝐴, 𝐴⟩})
2120adantr 480 . . . . . . . 8 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = {⟨𝐴, 𝐴⟩})
22 id 22 . . . . . . . . 9 ({⟨𝐴, 𝐴⟩} = 𝑋 → {⟨𝐴, 𝐴⟩} = 𝑋)
2322eqcoms 2739 . . . . . . . 8 (𝑋 = {⟨𝐴, 𝐴⟩} → {⟨𝐴, 𝐴⟩} = 𝑋)
2421, 23sylan9eqr 2793 . . . . . . 7 ((𝑋 = {⟨𝐴, 𝐴⟩} ∧ (𝐴𝑉𝑋𝐵)) → (0g𝐺) = 𝑋)
2524ex 412 . . . . . 6 (𝑋 = {⟨𝐴, 𝐴⟩} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
269, 25syl 17 . . . . 5 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
278, 26mpcom 38 . . . 4 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋)
282, 27eqtr2id 2784 . . 3 ((𝐴𝑉𝑋𝐵) → 𝑋 = (𝐺 Σg ∅))
2928fveq2d 6895 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = (𝑁‘(𝐺 Σg ∅)))
305, 11eqeltri 2828 . . . 4 𝐷 ∈ V
31 wrd0 14496 . . . 4 ∅ ∈ Word ∅
3230, 31pm3.2i 470 . . 3 (𝐷 ∈ V ∧ ∅ ∈ Word ∅)
335fveq2i 6894 . . . . . . 7 (pmTrsp‘𝐷) = (pmTrsp‘{𝐴})
34 pmtrsn 19435 . . . . . . 7 (pmTrsp‘{𝐴}) = ∅
3533, 34eqtri 2759 . . . . . 6 (pmTrsp‘𝐷) = ∅
3635rneqi 5936 . . . . 5 ran (pmTrsp‘𝐷) = ran ∅
37 rn0 5925 . . . . 5 ran ∅ = ∅
3836, 37eqtr2i 2760 . . . 4 ∅ = ran (pmTrsp‘𝐷)
39 psgnsn.n . . . 4 𝑁 = (pmSgn‘𝐷)
403, 38, 39psgnvalii 19425 . . 3 ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
4132, 40mp1i 13 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
42 hash0 14334 . . . . 5 (♯‘∅) = 0
4342oveq2i 7423 . . . 4 (-1↑(♯‘∅)) = (-1↑0)
44 neg1cn 12333 . . . . 5 -1 ∈ ℂ
45 exp0 14038 . . . . 5 (-1 ∈ ℂ → (-1↑0) = 1)
4644, 45ax-mp 5 . . . 4 (-1↑0) = 1
4743, 46eqtri 2759 . . 3 (-1↑(♯‘∅)) = 1
4847a1i 11 . 2 ((𝐴𝑉𝑋𝐵) → (-1↑(♯‘∅)) = 1)
4929, 41, 483eqtrd 2775 1 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322  {csn 4628  cop 4634   I cid 5573   × cxp 5674  ran crn 5677  cres 5678  cfv 6543  (class class class)co 7412  cc 11114  0cc0 11116  1c1 11117  -cneg 11452  cexp 14034  chash 14297  Word cword 14471  Basecbs 17151  0gc0g 17392   Σg cgsu 17393  SymGrpcsymg 19282  pmTrspcpmtr 19357  pmSgncpsgn 19405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-word 14472  df-lsw 14520  df-concat 14528  df-s1 14553  df-substr 14598  df-pfx 14628  df-splice 14707  df-reverse 14716  df-s2 14806  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-tset 17223  df-0g 17394  df-gsum 17395  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-efmnd 18792  df-grp 18864  df-minusg 18865  df-subg 19046  df-ghm 19135  df-gim 19180  df-oppg 19258  df-symg 19283  df-pmtr 19358  df-psgn 19407
This theorem is referenced by:  m1detdiag  22419
  Copyright terms: Public domain W3C validator