MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnsn Structured version   Visualization version   GIF version

Theorem psgnsn 19043
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
psgnsn.0 𝐷 = {𝐴}
psgnsn.g 𝐺 = (SymGrp‘𝐷)
psgnsn.b 𝐵 = (Base‘𝐺)
psgnsn.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnsn ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)

Proof of Theorem psgnsn
StepHypRef Expression
1 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
21gsum0 18283 . . . 4 (𝐺 Σg ∅) = (0g𝐺)
3 psgnsn.g . . . . . . . 8 𝐺 = (SymGrp‘𝐷)
4 psgnsn.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 psgnsn.0 . . . . . . . 8 𝐷 = {𝐴}
63, 4, 5symg1bas 18913 . . . . . . 7 (𝐴𝑉𝐵 = {{⟨𝐴, 𝐴⟩}})
76eleq2d 2824 . . . . . 6 (𝐴𝑉 → (𝑋𝐵𝑋 ∈ {{⟨𝐴, 𝐴⟩}}))
87biimpa 476 . . . . 5 ((𝐴𝑉𝑋𝐵) → 𝑋 ∈ {{⟨𝐴, 𝐴⟩}})
9 elsni 4575 . . . . . 6 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → 𝑋 = {⟨𝐴, 𝐴⟩})
105reseq2i 5877 . . . . . . . . . 10 ( I ↾ 𝐷) = ( I ↾ {𝐴})
11 snex 5349 . . . . . . . . . . . . 13 {𝐴} ∈ V
1211snid 4594 . . . . . . . . . . . 12 {𝐴} ∈ {{𝐴}}
135, 12eqeltri 2835 . . . . . . . . . . 11 𝐷 ∈ {{𝐴}}
143symgid 18924 . . . . . . . . . . 11 (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g𝐺))
1513, 14mp1i 13 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ 𝐷) = (0g𝐺))
16 restidsing 5951 . . . . . . . . . . 11 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
17 xpsng 6993 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1916, 18eqtrid 2790 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ {𝐴}) = {⟨𝐴, 𝐴⟩})
2010, 15, 193eqtr3a 2803 . . . . . . . . 9 (𝐴𝑉 → (0g𝐺) = {⟨𝐴, 𝐴⟩})
2120adantr 480 . . . . . . . 8 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = {⟨𝐴, 𝐴⟩})
22 id 22 . . . . . . . . 9 ({⟨𝐴, 𝐴⟩} = 𝑋 → {⟨𝐴, 𝐴⟩} = 𝑋)
2322eqcoms 2746 . . . . . . . 8 (𝑋 = {⟨𝐴, 𝐴⟩} → {⟨𝐴, 𝐴⟩} = 𝑋)
2421, 23sylan9eqr 2801 . . . . . . 7 ((𝑋 = {⟨𝐴, 𝐴⟩} ∧ (𝐴𝑉𝑋𝐵)) → (0g𝐺) = 𝑋)
2524ex 412 . . . . . 6 (𝑋 = {⟨𝐴, 𝐴⟩} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
269, 25syl 17 . . . . 5 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
278, 26mpcom 38 . . . 4 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋)
282, 27eqtr2id 2792 . . 3 ((𝐴𝑉𝑋𝐵) → 𝑋 = (𝐺 Σg ∅))
2928fveq2d 6760 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = (𝑁‘(𝐺 Σg ∅)))
305, 11eqeltri 2835 . . . 4 𝐷 ∈ V
31 wrd0 14170 . . . 4 ∅ ∈ Word ∅
3230, 31pm3.2i 470 . . 3 (𝐷 ∈ V ∧ ∅ ∈ Word ∅)
335fveq2i 6759 . . . . . . 7 (pmTrsp‘𝐷) = (pmTrsp‘{𝐴})
34 pmtrsn 19042 . . . . . . 7 (pmTrsp‘{𝐴}) = ∅
3533, 34eqtri 2766 . . . . . 6 (pmTrsp‘𝐷) = ∅
3635rneqi 5835 . . . . 5 ran (pmTrsp‘𝐷) = ran ∅
37 rn0 5824 . . . . 5 ran ∅ = ∅
3836, 37eqtr2i 2767 . . . 4 ∅ = ran (pmTrsp‘𝐷)
39 psgnsn.n . . . 4 𝑁 = (pmSgn‘𝐷)
403, 38, 39psgnvalii 19032 . . 3 ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
4132, 40mp1i 13 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
42 hash0 14010 . . . . 5 (♯‘∅) = 0
4342oveq2i 7266 . . . 4 (-1↑(♯‘∅)) = (-1↑0)
44 neg1cn 12017 . . . . 5 -1 ∈ ℂ
45 exp0 13714 . . . . 5 (-1 ∈ ℂ → (-1↑0) = 1)
4644, 45ax-mp 5 . . . 4 (-1↑0) = 1
4743, 46eqtri 2766 . . 3 (-1↑(♯‘∅)) = 1
4847a1i 11 . 2 ((𝐴𝑉𝑋𝐵) → (-1↑(♯‘∅)) = 1)
4929, 41, 483eqtrd 2782 1 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  cop 4564   I cid 5479   × cxp 5578  ran crn 5581  cres 5582  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803  -cneg 11136  cexp 13710  chash 13972  Word cword 14145  Basecbs 16840  0gc0g 17067   Σg cgsu 17068  SymGrpcsymg 18889  pmTrspcpmtr 18964  pmSgncpsgn 19012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-lsw 14194  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-splice 14391  df-reverse 14400  df-s2 14489  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-efmnd 18423  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747  df-gim 18790  df-oppg 18865  df-symg 18890  df-pmtr 18965  df-psgn 19014
This theorem is referenced by:  m1detdiag  21654
  Copyright terms: Public domain W3C validator