MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnsn Structured version   Visualization version   GIF version

Theorem psgnsn 19457
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
psgnsn.0 𝐷 = {𝐴}
psgnsn.g 𝐺 = (SymGrp‘𝐷)
psgnsn.b 𝐵 = (Base‘𝐺)
psgnsn.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnsn ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)

Proof of Theorem psgnsn
StepHypRef Expression
1 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
21gsum0 18618 . . . 4 (𝐺 Σg ∅) = (0g𝐺)
3 psgnsn.g . . . . . . . 8 𝐺 = (SymGrp‘𝐷)
4 psgnsn.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 psgnsn.0 . . . . . . . 8 𝐷 = {𝐴}
63, 4, 5symg1bas 19328 . . . . . . 7 (𝐴𝑉𝐵 = {{⟨𝐴, 𝐴⟩}})
76eleq2d 2815 . . . . . 6 (𝐴𝑉 → (𝑋𝐵𝑋 ∈ {{⟨𝐴, 𝐴⟩}}))
87biimpa 476 . . . . 5 ((𝐴𝑉𝑋𝐵) → 𝑋 ∈ {{⟨𝐴, 𝐴⟩}})
9 elsni 4609 . . . . . 6 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → 𝑋 = {⟨𝐴, 𝐴⟩})
105reseq2i 5950 . . . . . . . . . 10 ( I ↾ 𝐷) = ( I ↾ {𝐴})
11 snex 5394 . . . . . . . . . . . . 13 {𝐴} ∈ V
1211snid 4629 . . . . . . . . . . . 12 {𝐴} ∈ {{𝐴}}
135, 12eqeltri 2825 . . . . . . . . . . 11 𝐷 ∈ {{𝐴}}
143symgid 19338 . . . . . . . . . . 11 (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g𝐺))
1513, 14mp1i 13 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ 𝐷) = (0g𝐺))
16 restidsing 6027 . . . . . . . . . . 11 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
17 xpsng 7114 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1916, 18eqtrid 2777 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ {𝐴}) = {⟨𝐴, 𝐴⟩})
2010, 15, 193eqtr3a 2789 . . . . . . . . 9 (𝐴𝑉 → (0g𝐺) = {⟨𝐴, 𝐴⟩})
2120adantr 480 . . . . . . . 8 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = {⟨𝐴, 𝐴⟩})
22 id 22 . . . . . . . . 9 ({⟨𝐴, 𝐴⟩} = 𝑋 → {⟨𝐴, 𝐴⟩} = 𝑋)
2322eqcoms 2738 . . . . . . . 8 (𝑋 = {⟨𝐴, 𝐴⟩} → {⟨𝐴, 𝐴⟩} = 𝑋)
2421, 23sylan9eqr 2787 . . . . . . 7 ((𝑋 = {⟨𝐴, 𝐴⟩} ∧ (𝐴𝑉𝑋𝐵)) → (0g𝐺) = 𝑋)
2524ex 412 . . . . . 6 (𝑋 = {⟨𝐴, 𝐴⟩} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
269, 25syl 17 . . . . 5 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
278, 26mpcom 38 . . . 4 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋)
282, 27eqtr2id 2778 . . 3 ((𝐴𝑉𝑋𝐵) → 𝑋 = (𝐺 Σg ∅))
2928fveq2d 6865 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = (𝑁‘(𝐺 Σg ∅)))
305, 11eqeltri 2825 . . . 4 𝐷 ∈ V
31 wrd0 14511 . . . 4 ∅ ∈ Word ∅
3230, 31pm3.2i 470 . . 3 (𝐷 ∈ V ∧ ∅ ∈ Word ∅)
335fveq2i 6864 . . . . . . 7 (pmTrsp‘𝐷) = (pmTrsp‘{𝐴})
34 pmtrsn 19456 . . . . . . 7 (pmTrsp‘{𝐴}) = ∅
3533, 34eqtri 2753 . . . . . 6 (pmTrsp‘𝐷) = ∅
3635rneqi 5904 . . . . 5 ran (pmTrsp‘𝐷) = ran ∅
37 rn0 5892 . . . . 5 ran ∅ = ∅
3836, 37eqtr2i 2754 . . . 4 ∅ = ran (pmTrsp‘𝐷)
39 psgnsn.n . . . 4 𝑁 = (pmSgn‘𝐷)
403, 38, 39psgnvalii 19446 . . 3 ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
4132, 40mp1i 13 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
42 hash0 14339 . . . . 5 (♯‘∅) = 0
4342oveq2i 7401 . . . 4 (-1↑(♯‘∅)) = (-1↑0)
44 neg1cn 12178 . . . . 5 -1 ∈ ℂ
45 exp0 14037 . . . . 5 (-1 ∈ ℂ → (-1↑0) = 1)
4644, 45ax-mp 5 . . . 4 (-1↑0) = 1
4743, 46eqtri 2753 . . 3 (-1↑(♯‘∅)) = 1
4847a1i 11 . 2 ((𝐴𝑉𝑋𝐵) → (-1↑(♯‘∅)) = 1)
4929, 41, 483eqtrd 2769 1 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  cop 4598   I cid 5535   × cxp 5639  ran crn 5642  cres 5643  cfv 6514  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  -cneg 11413  cexp 14033  chash 14302  Word cword 14485  Basecbs 17186  0gc0g 17409   Σg cgsu 17410  SymGrpcsymg 19306  pmTrspcpmtr 19378  pmSgncpsgn 19426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-splice 14722  df-reverse 14731  df-s2 14821  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-efmnd 18803  df-grp 18875  df-minusg 18876  df-subg 19062  df-ghm 19152  df-gim 19198  df-oppg 19285  df-symg 19307  df-pmtr 19379  df-psgn 19428
This theorem is referenced by:  m1detdiag  22491
  Copyright terms: Public domain W3C validator