| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnsn | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| psgnsn.0 | ⊢ 𝐷 = {𝐴} |
| psgnsn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnsn.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnsn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 2 | 1 | gsum0 18667 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
| 3 | psgnsn.g | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 4 | psgnsn.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | psgnsn.0 | . . . . . . . 8 ⊢ 𝐷 = {𝐴} | |
| 6 | 3, 4, 5 | symg1bas 19377 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐵 = {{〈𝐴, 𝐴〉}}) |
| 7 | 6 | eleq2d 2819 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {{〈𝐴, 𝐴〉}})) |
| 8 | 7 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {{〈𝐴, 𝐴〉}}) |
| 9 | elsni 4623 | . . . . . 6 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → 𝑋 = {〈𝐴, 𝐴〉}) | |
| 10 | 5 | reseq2i 5974 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐷) = ( I ↾ {𝐴}) |
| 11 | snex 5416 | . . . . . . . . . . . . 13 ⊢ {𝐴} ∈ V | |
| 12 | 11 | snid 4642 | . . . . . . . . . . . 12 ⊢ {𝐴} ∈ {{𝐴}} |
| 13 | 5, 12 | eqeltri 2829 | . . . . . . . . . . 11 ⊢ 𝐷 ∈ {{𝐴}} |
| 14 | 3 | symgid 19388 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 15 | 13, 14 | mp1i 13 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 16 | restidsing 6051 | . . . . . . . . . . 11 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
| 17 | xpsng 7139 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
| 18 | 17 | anidms 566 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
| 19 | 16, 18 | eqtrid 2781 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ {𝐴}) = {〈𝐴, 𝐴〉}) |
| 20 | 10, 15, 19 | 3eqtr3a 2793 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
| 21 | 20 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
| 22 | id 22 | . . . . . . . . 9 ⊢ ({〈𝐴, 𝐴〉} = 𝑋 → {〈𝐴, 𝐴〉} = 𝑋) | |
| 23 | 22 | eqcoms 2742 | . . . . . . . 8 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → {〈𝐴, 𝐴〉} = 𝑋) |
| 24 | 21, 23 | sylan9eqr 2791 | . . . . . . 7 ⊢ ((𝑋 = {〈𝐴, 𝐴〉} ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵)) → (0g‘𝐺) = 𝑋) |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
| 26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
| 27 | 8, 26 | mpcom 38 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋) |
| 28 | 2, 27 | eqtr2id 2782 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝐺 Σg ∅)) |
| 29 | 28 | fveq2d 6890 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑁‘(𝐺 Σg ∅))) |
| 30 | 5, 11 | eqeltri 2829 | . . . 4 ⊢ 𝐷 ∈ V |
| 31 | wrd0 14560 | . . . 4 ⊢ ∅ ∈ Word ∅ | |
| 32 | 30, 31 | pm3.2i 470 | . . 3 ⊢ (𝐷 ∈ V ∧ ∅ ∈ Word ∅) |
| 33 | 5 | fveq2i 6889 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{𝐴}) |
| 34 | pmtrsn 19506 | . . . . . . 7 ⊢ (pmTrsp‘{𝐴}) = ∅ | |
| 35 | 33, 34 | eqtri 2757 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = ∅ |
| 36 | 35 | rneqi 5928 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran ∅ |
| 37 | rn0 5916 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 38 | 36, 37 | eqtr2i 2758 | . . . 4 ⊢ ∅ = ran (pmTrsp‘𝐷) |
| 39 | psgnsn.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 40 | 3, 38, 39 | psgnvalii 19496 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 41 | 32, 40 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 42 | hash0 14389 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 43 | 42 | oveq2i 7424 | . . . 4 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 44 | neg1cn 12362 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 45 | exp0 14088 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 46 | 44, 45 | ax-mp 5 | . . . 4 ⊢ (-1↑0) = 1 |
| 47 | 43, 46 | eqtri 2757 | . . 3 ⊢ (-1↑(♯‘∅)) = 1 |
| 48 | 47 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (-1↑(♯‘∅)) = 1) |
| 49 | 29, 41, 48 | 3eqtrd 2773 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 {csn 4606 〈cop 4612 I cid 5557 × cxp 5663 ran crn 5666 ↾ cres 5667 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 1c1 11138 -cneg 11475 ↑cexp 14084 ♯chash 14352 Word cword 14535 Basecbs 17230 0gc0g 17456 Σg cgsu 17457 SymGrpcsymg 19355 pmTrspcpmtr 19428 pmSgncpsgn 19476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1511 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-rp 13017 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14353 df-word 14536 df-lsw 14584 df-concat 14592 df-s1 14617 df-substr 14662 df-pfx 14692 df-splice 14771 df-reverse 14780 df-s2 14870 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-tset 17293 df-0g 17458 df-gsum 17459 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-efmnd 18852 df-grp 18924 df-minusg 18925 df-subg 19111 df-ghm 19201 df-gim 19247 df-oppg 19334 df-symg 19356 df-pmtr 19429 df-psgn 19478 |
| This theorem is referenced by: m1detdiag 22552 |
| Copyright terms: Public domain | W3C validator |