MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnsn Structured version   Visualization version   GIF version

Theorem psgnsn 19399
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.)
Hypotheses
Ref Expression
psgnsn.0 𝐷 = {𝐴}
psgnsn.g 𝐺 = (SymGrp‘𝐷)
psgnsn.b 𝐵 = (Base‘𝐺)
psgnsn.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnsn ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)

Proof of Theorem psgnsn
StepHypRef Expression
1 eqid 2729 . . . . 5 (0g𝐺) = (0g𝐺)
21gsum0 18558 . . . 4 (𝐺 Σg ∅) = (0g𝐺)
3 psgnsn.g . . . . . . . 8 𝐺 = (SymGrp‘𝐷)
4 psgnsn.b . . . . . . . 8 𝐵 = (Base‘𝐺)
5 psgnsn.0 . . . . . . . 8 𝐷 = {𝐴}
63, 4, 5symg1bas 19270 . . . . . . 7 (𝐴𝑉𝐵 = {{⟨𝐴, 𝐴⟩}})
76eleq2d 2814 . . . . . 6 (𝐴𝑉 → (𝑋𝐵𝑋 ∈ {{⟨𝐴, 𝐴⟩}}))
87biimpa 476 . . . . 5 ((𝐴𝑉𝑋𝐵) → 𝑋 ∈ {{⟨𝐴, 𝐴⟩}})
9 elsni 4594 . . . . . 6 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → 𝑋 = {⟨𝐴, 𝐴⟩})
105reseq2i 5927 . . . . . . . . . 10 ( I ↾ 𝐷) = ( I ↾ {𝐴})
11 snex 5375 . . . . . . . . . . . . 13 {𝐴} ∈ V
1211snid 4614 . . . . . . . . . . . 12 {𝐴} ∈ {{𝐴}}
135, 12eqeltri 2824 . . . . . . . . . . 11 𝐷 ∈ {{𝐴}}
143symgid 19280 . . . . . . . . . . 11 (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g𝐺))
1513, 14mp1i 13 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ 𝐷) = (0g𝐺))
16 restidsing 6004 . . . . . . . . . . 11 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
17 xpsng 7073 . . . . . . . . . . . 12 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1817anidms 566 . . . . . . . . . . 11 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
1916, 18eqtrid 2776 . . . . . . . . . 10 (𝐴𝑉 → ( I ↾ {𝐴}) = {⟨𝐴, 𝐴⟩})
2010, 15, 193eqtr3a 2788 . . . . . . . . 9 (𝐴𝑉 → (0g𝐺) = {⟨𝐴, 𝐴⟩})
2120adantr 480 . . . . . . . 8 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = {⟨𝐴, 𝐴⟩})
22 id 22 . . . . . . . . 9 ({⟨𝐴, 𝐴⟩} = 𝑋 → {⟨𝐴, 𝐴⟩} = 𝑋)
2322eqcoms 2737 . . . . . . . 8 (𝑋 = {⟨𝐴, 𝐴⟩} → {⟨𝐴, 𝐴⟩} = 𝑋)
2421, 23sylan9eqr 2786 . . . . . . 7 ((𝑋 = {⟨𝐴, 𝐴⟩} ∧ (𝐴𝑉𝑋𝐵)) → (0g𝐺) = 𝑋)
2524ex 412 . . . . . 6 (𝑋 = {⟨𝐴, 𝐴⟩} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
269, 25syl 17 . . . . 5 (𝑋 ∈ {{⟨𝐴, 𝐴⟩}} → ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋))
278, 26mpcom 38 . . . 4 ((𝐴𝑉𝑋𝐵) → (0g𝐺) = 𝑋)
282, 27eqtr2id 2777 . . 3 ((𝐴𝑉𝑋𝐵) → 𝑋 = (𝐺 Σg ∅))
2928fveq2d 6826 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = (𝑁‘(𝐺 Σg ∅)))
305, 11eqeltri 2824 . . . 4 𝐷 ∈ V
31 wrd0 14446 . . . 4 ∅ ∈ Word ∅
3230, 31pm3.2i 470 . . 3 (𝐷 ∈ V ∧ ∅ ∈ Word ∅)
335fveq2i 6825 . . . . . . 7 (pmTrsp‘𝐷) = (pmTrsp‘{𝐴})
34 pmtrsn 19398 . . . . . . 7 (pmTrsp‘{𝐴}) = ∅
3533, 34eqtri 2752 . . . . . 6 (pmTrsp‘𝐷) = ∅
3635rneqi 5879 . . . . 5 ran (pmTrsp‘𝐷) = ran ∅
37 rn0 5868 . . . . 5 ran ∅ = ∅
3836, 37eqtr2i 2753 . . . 4 ∅ = ran (pmTrsp‘𝐷)
39 psgnsn.n . . . 4 𝑁 = (pmSgn‘𝐷)
403, 38, 39psgnvalii 19388 . . 3 ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
4132, 40mp1i 13 . 2 ((𝐴𝑉𝑋𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅)))
42 hash0 14274 . . . . 5 (♯‘∅) = 0
4342oveq2i 7360 . . . 4 (-1↑(♯‘∅)) = (-1↑0)
44 neg1cn 12113 . . . . 5 -1 ∈ ℂ
45 exp0 13972 . . . . 5 (-1 ∈ ℂ → (-1↑0) = 1)
4644, 45ax-mp 5 . . . 4 (-1↑0) = 1
4743, 46eqtri 2752 . . 3 (-1↑(♯‘∅)) = 1
4847a1i 11 . 2 ((𝐴𝑉𝑋𝐵) → (-1↑(♯‘∅)) = 1)
4929, 41, 483eqtrd 2768 1 ((𝐴𝑉𝑋𝐵) → (𝑁𝑋) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  {csn 4577  cop 4583   I cid 5513   × cxp 5617  ran crn 5620  cres 5621  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010  -cneg 11348  cexp 13968  chash 14237  Word cword 14420  Basecbs 17120  0gc0g 17343   Σg cgsu 17344  SymGrpcsymg 19248  pmTrspcpmtr 19320  pmSgncpsgn 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578  df-splice 14656  df-reverse 14665  df-s2 14755  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-efmnd 18743  df-grp 18815  df-minusg 18816  df-subg 19002  df-ghm 19092  df-gim 19138  df-oppg 19225  df-symg 19249  df-pmtr 19321  df-psgn 19370
This theorem is referenced by:  m1detdiag  22482
  Copyright terms: Public domain W3C validator