![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnsn | Structured version Visualization version GIF version |
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
psgnsn.0 | ⊢ 𝐷 = {𝐴} |
psgnsn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnsn.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnsn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | 1 | gsum0 17675 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
3 | psgnsn.g | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐷) | |
4 | psgnsn.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
5 | psgnsn.0 | . . . . . . . 8 ⊢ 𝐷 = {𝐴} | |
6 | 3, 4, 5 | symg1bas 18210 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐵 = {{〈𝐴, 𝐴〉}}) |
7 | 6 | eleq2d 2845 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {{〈𝐴, 𝐴〉}})) |
8 | 7 | biimpa 470 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {{〈𝐴, 𝐴〉}}) |
9 | elsni 4415 | . . . . . 6 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → 𝑋 = {〈𝐴, 𝐴〉}) | |
10 | 5 | reseq2i 5641 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐷) = ( I ↾ {𝐴}) |
11 | snex 5142 | . . . . . . . . . . . . 13 ⊢ {𝐴} ∈ V | |
12 | 11 | snid 4430 | . . . . . . . . . . . 12 ⊢ {𝐴} ∈ {{𝐴}} |
13 | 5, 12 | eqeltri 2855 | . . . . . . . . . . 11 ⊢ 𝐷 ∈ {{𝐴}} |
14 | 3 | symgid 18215 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g‘𝐺)) |
15 | 13, 14 | mp1i 13 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝐺)) |
16 | restidsing 5716 | . . . . . . . . . . 11 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
17 | xpsng 6673 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
18 | 17 | anidms 562 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
19 | 16, 18 | syl5eq 2826 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ {𝐴}) = {〈𝐴, 𝐴〉}) |
20 | 10, 15, 19 | 3eqtr3a 2838 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
21 | 20 | adantr 474 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
22 | id 22 | . . . . . . . . 9 ⊢ ({〈𝐴, 𝐴〉} = 𝑋 → {〈𝐴, 𝐴〉} = 𝑋) | |
23 | 22 | eqcoms 2786 | . . . . . . . 8 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → {〈𝐴, 𝐴〉} = 𝑋) |
24 | 21, 23 | sylan9eqr 2836 | . . . . . . 7 ⊢ ((𝑋 = {〈𝐴, 𝐴〉} ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵)) → (0g‘𝐺) = 𝑋) |
25 | 24 | ex 403 | . . . . . 6 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
27 | 8, 26 | mpcom 38 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋) |
28 | 2, 27 | syl5req 2827 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝐺 Σg ∅)) |
29 | 28 | fveq2d 6452 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑁‘(𝐺 Σg ∅))) |
30 | 5, 11 | eqeltri 2855 | . . . 4 ⊢ 𝐷 ∈ V |
31 | wrd0 13633 | . . . 4 ⊢ ∅ ∈ Word ∅ | |
32 | 30, 31 | pm3.2i 464 | . . 3 ⊢ (𝐷 ∈ V ∧ ∅ ∈ Word ∅) |
33 | 5 | fveq2i 6451 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{𝐴}) |
34 | pmtrsn 18334 | . . . . . . 7 ⊢ (pmTrsp‘{𝐴}) = ∅ | |
35 | 33, 34 | eqtri 2802 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = ∅ |
36 | 35 | rneqi 5599 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran ∅ |
37 | rn0 5625 | . . . . 5 ⊢ ran ∅ = ∅ | |
38 | 36, 37 | eqtr2i 2803 | . . . 4 ⊢ ∅ = ran (pmTrsp‘𝐷) |
39 | psgnsn.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
40 | 3, 38, 39 | psgnvalii 18324 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
41 | 32, 40 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
42 | hash0 13479 | . . . . 5 ⊢ (♯‘∅) = 0 | |
43 | 42 | oveq2i 6935 | . . . 4 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
44 | neg1cn 11501 | . . . . 5 ⊢ -1 ∈ ℂ | |
45 | exp0 13187 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
46 | 44, 45 | ax-mp 5 | . . . 4 ⊢ (-1↑0) = 1 |
47 | 43, 46 | eqtri 2802 | . . 3 ⊢ (-1↑(♯‘∅)) = 1 |
48 | 47 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (-1↑(♯‘∅)) = 1) |
49 | 29, 41, 48 | 3eqtrd 2818 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∅c0 4141 {csn 4398 〈cop 4404 I cid 5262 × cxp 5355 ran crn 5358 ↾ cres 5359 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 0cc0 10274 1c1 10275 -cneg 10609 ↑cexp 13183 ♯chash 13441 Word cword 13605 Basecbs 16266 0gc0g 16497 Σg cgsu 16498 SymGrpcsymg 18191 pmTrspcpmtr 18255 pmSgncpsgn 18303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-xor 1583 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-ot 4407 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-tpos 7636 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-xnn0 11720 df-z 11734 df-uz 11998 df-rp 12143 df-fz 12649 df-fzo 12790 df-seq 13125 df-exp 13184 df-hash 13442 df-word 13606 df-lsw 13659 df-concat 13667 df-s1 13692 df-substr 13737 df-pfx 13786 df-splice 13893 df-reverse 13911 df-s2 14005 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-tset 16368 df-0g 16499 df-gsum 16500 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-mhm 17732 df-submnd 17733 df-grp 17823 df-minusg 17824 df-subg 17986 df-ghm 18053 df-gim 18096 df-oppg 18170 df-symg 18192 df-pmtr 18256 df-psgn 18305 |
This theorem is referenced by: m1detdiag 20819 |
Copyright terms: Public domain | W3C validator |