| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnsn | Structured version Visualization version GIF version | ||
| Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| psgnsn.0 | ⊢ 𝐷 = {𝐴} |
| psgnsn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
| psgnsn.b | ⊢ 𝐵 = (Base‘𝐺) |
| psgnsn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
| Ref | Expression |
|---|---|
| psgnsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 2 | 1 | gsum0 18558 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
| 3 | psgnsn.g | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐷) | |
| 4 | psgnsn.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | psgnsn.0 | . . . . . . . 8 ⊢ 𝐷 = {𝐴} | |
| 6 | 3, 4, 5 | symg1bas 19270 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐵 = {{〈𝐴, 𝐴〉}}) |
| 7 | 6 | eleq2d 2814 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {{〈𝐴, 𝐴〉}})) |
| 8 | 7 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {{〈𝐴, 𝐴〉}}) |
| 9 | elsni 4594 | . . . . . 6 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → 𝑋 = {〈𝐴, 𝐴〉}) | |
| 10 | 5 | reseq2i 5927 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐷) = ( I ↾ {𝐴}) |
| 11 | snex 5375 | . . . . . . . . . . . . 13 ⊢ {𝐴} ∈ V | |
| 12 | 11 | snid 4614 | . . . . . . . . . . . 12 ⊢ {𝐴} ∈ {{𝐴}} |
| 13 | 5, 12 | eqeltri 2824 | . . . . . . . . . . 11 ⊢ 𝐷 ∈ {{𝐴}} |
| 14 | 3 | symgid 19280 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 15 | 13, 14 | mp1i 13 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝐺)) |
| 16 | restidsing 6004 | . . . . . . . . . . 11 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
| 17 | xpsng 7073 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
| 18 | 17 | anidms 566 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
| 19 | 16, 18 | eqtrid 2776 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ {𝐴}) = {〈𝐴, 𝐴〉}) |
| 20 | 10, 15, 19 | 3eqtr3a 2788 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
| 21 | 20 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
| 22 | id 22 | . . . . . . . . 9 ⊢ ({〈𝐴, 𝐴〉} = 𝑋 → {〈𝐴, 𝐴〉} = 𝑋) | |
| 23 | 22 | eqcoms 2737 | . . . . . . . 8 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → {〈𝐴, 𝐴〉} = 𝑋) |
| 24 | 21, 23 | sylan9eqr 2786 | . . . . . . 7 ⊢ ((𝑋 = {〈𝐴, 𝐴〉} ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵)) → (0g‘𝐺) = 𝑋) |
| 25 | 24 | ex 412 | . . . . . 6 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
| 26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
| 27 | 8, 26 | mpcom 38 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋) |
| 28 | 2, 27 | eqtr2id 2777 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝐺 Σg ∅)) |
| 29 | 28 | fveq2d 6826 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑁‘(𝐺 Σg ∅))) |
| 30 | 5, 11 | eqeltri 2824 | . . . 4 ⊢ 𝐷 ∈ V |
| 31 | wrd0 14446 | . . . 4 ⊢ ∅ ∈ Word ∅ | |
| 32 | 30, 31 | pm3.2i 470 | . . 3 ⊢ (𝐷 ∈ V ∧ ∅ ∈ Word ∅) |
| 33 | 5 | fveq2i 6825 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{𝐴}) |
| 34 | pmtrsn 19398 | . . . . . . 7 ⊢ (pmTrsp‘{𝐴}) = ∅ | |
| 35 | 33, 34 | eqtri 2752 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = ∅ |
| 36 | 35 | rneqi 5879 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran ∅ |
| 37 | rn0 5868 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 38 | 36, 37 | eqtr2i 2753 | . . . 4 ⊢ ∅ = ran (pmTrsp‘𝐷) |
| 39 | psgnsn.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
| 40 | 3, 38, 39 | psgnvalii 19388 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 41 | 32, 40 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(♯‘∅))) |
| 42 | hash0 14274 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 43 | 42 | oveq2i 7360 | . . . 4 ⊢ (-1↑(♯‘∅)) = (-1↑0) |
| 44 | neg1cn 12113 | . . . . 5 ⊢ -1 ∈ ℂ | |
| 45 | exp0 13972 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
| 46 | 44, 45 | ax-mp 5 | . . . 4 ⊢ (-1↑0) = 1 |
| 47 | 43, 46 | eqtri 2752 | . . 3 ⊢ (-1↑(♯‘∅)) = 1 |
| 48 | 47 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (-1↑(♯‘∅)) = 1) |
| 49 | 29, 41, 48 | 3eqtrd 2768 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 {csn 4577 〈cop 4583 I cid 5513 × cxp 5617 ran crn 5620 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 -cneg 11348 ↑cexp 13968 ♯chash 14237 Word cword 14420 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 SymGrpcsymg 19248 pmTrspcpmtr 19320 pmSgncpsgn 19368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14503 df-substr 14548 df-pfx 14578 df-splice 14656 df-reverse 14665 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-efmnd 18743 df-grp 18815 df-minusg 18816 df-subg 19002 df-ghm 19092 df-gim 19138 df-oppg 19225 df-symg 19249 df-pmtr 19321 df-psgn 19370 |
| This theorem is referenced by: m1detdiag 22482 |
| Copyright terms: Public domain | W3C validator |