Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > residpr | Structured version Visualization version GIF version |
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
residpr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4561 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | reseq2i 5877 | . . 3 ⊢ ( I ↾ {𝐴, 𝐵}) = ( I ↾ ({𝐴} ∪ {𝐵})) |
3 | resundi 5894 | . . 3 ⊢ ( I ↾ ({𝐴} ∪ {𝐵})) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ ( I ↾ {𝐴, 𝐵}) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) |
5 | xpsng 6993 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
6 | 5 | anidms 566 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
8 | xpsng 6993 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) | |
9 | 8 | anidms 566 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) |
11 | 7, 10 | uneq12d 4094 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) = ({〈𝐴, 𝐴〉} ∪ {〈𝐵, 𝐵〉})) |
12 | restidsing 5951 | . . . 4 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
13 | restidsing 5951 | . . . 4 ⊢ ( I ↾ {𝐵}) = ({𝐵} × {𝐵}) | |
14 | 12, 13 | uneq12i 4091 | . . 3 ⊢ (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) |
15 | df-pr 4561 | . . 3 ⊢ {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉} = ({〈𝐴, 𝐴〉} ∪ {〈𝐵, 𝐵〉}) | |
16 | 11, 14, 15 | 3eqtr4g 2804 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
17 | 4, 16 | eqtrid 2790 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 {csn 4558 {cpr 4560 〈cop 4564 I cid 5479 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: psgnprfval1 19045 |
Copyright terms: Public domain | W3C validator |