MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  residpr Structured version   Visualization version   GIF version

Theorem residpr 6599
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.)
Assertion
Ref Expression
residpr ((𝐴𝑉𝐵𝑊) → ( I ↾ {𝐴, 𝐵}) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})

Proof of Theorem residpr
StepHypRef Expression
1 df-pr 4336 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21reseq2i 5561 . . 3 ( I ↾ {𝐴, 𝐵}) = ( I ↾ ({𝐴} ∪ {𝐵}))
3 resundi 5585 . . 3 ( I ↾ ({𝐴} ∪ {𝐵})) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵}))
42, 3eqtri 2786 . 2 ( I ↾ {𝐴, 𝐵}) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵}))
5 xpsng 6596 . . . . . 6 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
65anidms 562 . . . . 5 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
76adantr 472 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
8 xpsng 6596 . . . . . 6 ((𝐵𝑊𝐵𝑊) → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
98anidms 562 . . . . 5 (𝐵𝑊 → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
109adantl 473 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
117, 10uneq12d 3929 . . 3 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) = ({⟨𝐴, 𝐴⟩} ∪ {⟨𝐵, 𝐵⟩}))
12 restidsing 5641 . . . 4 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
13 restidsing 5641 . . . 4 ( I ↾ {𝐵}) = ({𝐵} × {𝐵})
1412, 13uneq12i 3926 . . 3 (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵}))
15 df-pr 4336 . . 3 {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩} = ({⟨𝐴, 𝐴⟩} ∪ {⟨𝐵, 𝐵⟩})
1611, 14, 153eqtr4g 2823 . 2 ((𝐴𝑉𝐵𝑊) → (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})
174, 16syl5eq 2810 1 ((𝐴𝑉𝐵𝑊) → ( I ↾ {𝐴, 𝐵}) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  cun 3729  {csn 4333  {cpr 4335  cop 4339   I cid 5183   × cxp 5274  cres 5278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pr 5061
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-nul 4079  df-if 4243  df-sn 4334  df-pr 4336  df-op 4340  df-br 4809  df-opab 4871  df-mpt 4888  df-id 5184  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074
This theorem is referenced by:  psgnprfval1  18207
  Copyright terms: Public domain W3C validator