MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  residpr Structured version   Visualization version   GIF version

Theorem residpr 7177
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.)
Assertion
Ref Expression
residpr ((𝐴𝑉𝐵𝑊) → ( I ↾ {𝐴, 𝐵}) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})

Proof of Theorem residpr
StepHypRef Expression
1 df-pr 4651 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21reseq2i 6006 . . 3 ( I ↾ {𝐴, 𝐵}) = ( I ↾ ({𝐴} ∪ {𝐵}))
3 resundi 6023 . . 3 ( I ↾ ({𝐴} ∪ {𝐵})) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵}))
42, 3eqtri 2768 . 2 ( I ↾ {𝐴, 𝐵}) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵}))
5 xpsng 7173 . . . . . 6 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
65anidms 566 . . . . 5 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
76adantr 480 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
8 xpsng 7173 . . . . . 6 ((𝐵𝑊𝐵𝑊) → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
98anidms 566 . . . . 5 (𝐵𝑊 → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
109adantl 481 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
117, 10uneq12d 4192 . . 3 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) = ({⟨𝐴, 𝐴⟩} ∪ {⟨𝐵, 𝐵⟩}))
12 restidsing 6082 . . . 4 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
13 restidsing 6082 . . . 4 ( I ↾ {𝐵}) = ({𝐵} × {𝐵})
1412, 13uneq12i 4189 . . 3 (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵}))
15 df-pr 4651 . . 3 {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩} = ({⟨𝐴, 𝐴⟩} ∪ {⟨𝐵, 𝐵⟩})
1611, 14, 153eqtr4g 2805 . 2 ((𝐴𝑉𝐵𝑊) → (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})
174, 16eqtrid 2792 1 ((𝐴𝑉𝐵𝑊) → ( I ↾ {𝐴, 𝐵}) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cun 3974  {csn 4648  {cpr 4650  cop 4654   I cid 5592   × cxp 5698  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  psgnprfval1  19564
  Copyright terms: Public domain W3C validator