![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > residpr | Structured version Visualization version GIF version |
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
residpr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4635 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | reseq2i 5986 | . . 3 ⊢ ( I ↾ {𝐴, 𝐵}) = ( I ↾ ({𝐴} ∪ {𝐵})) |
3 | resundi 6003 | . . 3 ⊢ ( I ↾ ({𝐴} ∪ {𝐵})) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) | |
4 | 2, 3 | eqtri 2756 | . 2 ⊢ ( I ↾ {𝐴, 𝐵}) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) |
5 | xpsng 7154 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
6 | 5 | anidms 565 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
8 | xpsng 7154 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) | |
9 | 8 | anidms 565 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) |
10 | 9 | adantl 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) |
11 | 7, 10 | uneq12d 4165 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) = ({〈𝐴, 𝐴〉} ∪ {〈𝐵, 𝐵〉})) |
12 | restidsing 6061 | . . . 4 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
13 | restidsing 6061 | . . . 4 ⊢ ( I ↾ {𝐵}) = ({𝐵} × {𝐵}) | |
14 | 12, 13 | uneq12i 4162 | . . 3 ⊢ (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) |
15 | df-pr 4635 | . . 3 ⊢ {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉} = ({〈𝐴, 𝐴〉} ∪ {〈𝐵, 𝐵〉}) | |
16 | 11, 14, 15 | 3eqtr4g 2793 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
17 | 4, 16 | eqtrid 2780 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∪ cun 3947 {csn 4632 {cpr 4634 〈cop 4638 I cid 5579 × cxp 5680 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 |
This theorem is referenced by: psgnprfval1 19484 |
Copyright terms: Public domain | W3C validator |