Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > residpr | Structured version Visualization version GIF version |
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.) |
Ref | Expression |
---|---|
residpr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 4564 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
2 | 1 | reseq2i 5888 | . . 3 ⊢ ( I ↾ {𝐴, 𝐵}) = ( I ↾ ({𝐴} ∪ {𝐵})) |
3 | resundi 5905 | . . 3 ⊢ ( I ↾ ({𝐴} ∪ {𝐵})) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) | |
4 | 2, 3 | eqtri 2766 | . 2 ⊢ ( I ↾ {𝐴, 𝐵}) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) |
5 | xpsng 7011 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
6 | 5 | anidms 567 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
8 | xpsng 7011 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐵 ∈ 𝑊) → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) | |
9 | 8 | anidms 567 | . . . . 5 ⊢ (𝐵 ∈ 𝑊 → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐵} × {𝐵}) = {〈𝐵, 𝐵〉}) |
11 | 7, 10 | uneq12d 4098 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) = ({〈𝐴, 𝐴〉} ∪ {〈𝐵, 𝐵〉})) |
12 | restidsing 5962 | . . . 4 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
13 | restidsing 5962 | . . . 4 ⊢ ( I ↾ {𝐵}) = ({𝐵} × {𝐵}) | |
14 | 12, 13 | uneq12i 4095 | . . 3 ⊢ (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) |
15 | df-pr 4564 | . . 3 ⊢ {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉} = ({〈𝐴, 𝐴〉} ∪ {〈𝐵, 𝐵〉}) | |
16 | 11, 14, 15 | 3eqtr4g 2803 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
17 | 4, 16 | eqtrid 2790 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ( I ↾ {𝐴, 𝐵}) = {〈𝐴, 𝐴〉, 〈𝐵, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 {cpr 4563 〈cop 4567 I cid 5488 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: psgnprfval1 19130 |
Copyright terms: Public domain | W3C validator |