MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  residpr Structured version   Visualization version   GIF version

Theorem residpr 7076
Description: Restriction of the identity to a pair. (Contributed by AV, 11-Dec-2018.)
Assertion
Ref Expression
residpr ((𝐴𝑉𝐵𝑊) → ( I ↾ {𝐴, 𝐵}) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})

Proof of Theorem residpr
StepHypRef Expression
1 df-pr 4576 . . . 4 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
21reseq2i 5924 . . 3 ( I ↾ {𝐴, 𝐵}) = ( I ↾ ({𝐴} ∪ {𝐵}))
3 resundi 5941 . . 3 ( I ↾ ({𝐴} ∪ {𝐵})) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵}))
42, 3eqtri 2754 . 2 ( I ↾ {𝐴, 𝐵}) = (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵}))
5 xpsng 7072 . . . . . 6 ((𝐴𝑉𝐴𝑉) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
65anidms 566 . . . . 5 (𝐴𝑉 → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
76adantr 480 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐴} × {𝐴}) = {⟨𝐴, 𝐴⟩})
8 xpsng 7072 . . . . . 6 ((𝐵𝑊𝐵𝑊) → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
98anidms 566 . . . . 5 (𝐵𝑊 → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
109adantl 481 . . . 4 ((𝐴𝑉𝐵𝑊) → ({𝐵} × {𝐵}) = {⟨𝐵, 𝐵⟩})
117, 10uneq12d 4116 . . 3 ((𝐴𝑉𝐵𝑊) → (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵})) = ({⟨𝐴, 𝐴⟩} ∪ {⟨𝐵, 𝐵⟩}))
12 restidsing 6001 . . . 4 ( I ↾ {𝐴}) = ({𝐴} × {𝐴})
13 restidsing 6001 . . . 4 ( I ↾ {𝐵}) = ({𝐵} × {𝐵})
1412, 13uneq12i 4113 . . 3 (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = (({𝐴} × {𝐴}) ∪ ({𝐵} × {𝐵}))
15 df-pr 4576 . . 3 {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩} = ({⟨𝐴, 𝐴⟩} ∪ {⟨𝐵, 𝐵⟩})
1611, 14, 153eqtr4g 2791 . 2 ((𝐴𝑉𝐵𝑊) → (( I ↾ {𝐴}) ∪ ( I ↾ {𝐵})) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})
174, 16eqtrid 2778 1 ((𝐴𝑉𝐵𝑊) → ( I ↾ {𝐴, 𝐵}) = {⟨𝐴, 𝐴⟩, ⟨𝐵, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3895  {csn 4573  {cpr 4575  cop 4579   I cid 5508   × cxp 5612  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  psgnprfval1  19434
  Copyright terms: Public domain W3C validator