MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grp1inv Structured version   Visualization version   GIF version

Theorem grp1inv 18503
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1inv (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . 4 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18502 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3 snex 5340 . . . . 5 {𝐼} ∈ V
41grpbase 16864 . . . . 5 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
53, 4ax-mp 5 . . . 4 {𝐼} = (Base‘𝑀)
6 eqid 2739 . . . 4 (invg𝑀) = (invg𝑀)
75, 6grpinvf 18446 . . 3 (𝑀 ∈ Grp → (invg𝑀):{𝐼}⟶{𝐼})
82, 7syl 17 . 2 (𝐼𝑉 → (invg𝑀):{𝐼}⟶{𝐼})
9 fsng 6973 . . . 4 ((𝐼𝑉𝐼𝑉) → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
109anidms 570 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
11 simpr 488 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = {⟨𝐼, 𝐼⟩})
12 restidsing 5939 . . . . . . 7 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
13 xpsng 6975 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
1413anidms 570 . . . . . . 7 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
1512, 14eqtr2id 2793 . . . . . 6 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
1615adantr 484 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
1711, 16eqtrd 2779 . . . 4 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = ( I ↾ {𝐼}))
1817ex 416 . . 3 (𝐼𝑉 → ((invg𝑀) = {⟨𝐼, 𝐼⟩} → (invg𝑀) = ( I ↾ {𝐼})))
1910, 18sylbid 243 . 2 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} → (invg𝑀) = ( I ↾ {𝐼})))
208, 19mpd 15 1 (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2112  Vcvv 3423  {csn 4557  {cpr 4559  cop 4563   I cid 5470   × cxp 5566  cres 5570  wf 6396  cfv 6400  ndxcnx 16776  Basecbs 16792  +gcplusg 16834  Grpcgrp 18397  invgcminusg 18398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-nn 11860  df-2 11922  df-n0 12120  df-z 12206  df-uz 12468  df-fz 13125  df-struct 16732  df-slot 16767  df-ndx 16777  df-base 16793  df-plusg 16847  df-0g 16978  df-mgm 18146  df-sgrp 18195  df-mnd 18206  df-grp 18400  df-minusg 18401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator