MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grp1inv Structured version   Visualization version   GIF version

Theorem grp1inv 18203
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1inv (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . 4 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18202 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3 snex 5319 . . . . 5 {𝐼} ∈ V
41grpbase 16606 . . . . 5 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
53, 4ax-mp 5 . . . 4 {𝐼} = (Base‘𝑀)
6 eqid 2824 . . . 4 (invg𝑀) = (invg𝑀)
75, 6grpinvf 18146 . . 3 (𝑀 ∈ Grp → (invg𝑀):{𝐼}⟶{𝐼})
82, 7syl 17 . 2 (𝐼𝑉 → (invg𝑀):{𝐼}⟶{𝐼})
9 fsng 6887 . . . 4 ((𝐼𝑉𝐼𝑉) → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
109anidms 570 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
11 simpr 488 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = {⟨𝐼, 𝐼⟩})
12 restidsing 5909 . . . . . . 7 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
13 xpsng 6889 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
1413anidms 570 . . . . . . 7 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
1512, 14syl5req 2872 . . . . . 6 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
1615adantr 484 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
1711, 16eqtrd 2859 . . . 4 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = ( I ↾ {𝐼}))
1817ex 416 . . 3 (𝐼𝑉 → ((invg𝑀) = {⟨𝐼, 𝐼⟩} → (invg𝑀) = ( I ↾ {𝐼})))
1910, 18sylbid 243 . 2 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} → (invg𝑀) = ( I ↾ {𝐼})))
208, 19mpd 15 1 (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  Vcvv 3480  {csn 4549  {cpr 4551  cop 4555   I cid 5446   × cxp 5540  cres 5544  wf 6339  cfv 6343  ndxcnx 16476  Basecbs 16479  +gcplusg 16561  Grpcgrp 18099  invgcminusg 18100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11693  df-n0 11891  df-z 11975  df-uz 12237  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-plusg 16574  df-0g 16711  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-grp 18102  df-minusg 18103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator