| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grp1inv | Structured version Visualization version GIF version | ||
| Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
| Ref | Expression |
|---|---|
| grp1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| grp1inv | ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m | . . . 4 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 2 | 1 | grp1 18960 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
| 3 | snex 5372 | . . . . 5 ⊢ {𝐼} ∈ V | |
| 4 | 1 | grpbase 17193 | . . . . 5 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ {𝐼} = (Base‘𝑀) |
| 6 | eqid 2731 | . . . 4 ⊢ (invg‘𝑀) = (invg‘𝑀) | |
| 7 | 5, 6 | grpinvf 18899 | . . 3 ⊢ (𝑀 ∈ Grp → (invg‘𝑀):{𝐼}⟶{𝐼}) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):{𝐼}⟶{𝐼}) |
| 9 | fsng 7070 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) | |
| 10 | 9 | anidms 566 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) |
| 11 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = {〈𝐼, 𝐼〉}) | |
| 12 | restidsing 6001 | . . . . . . 7 ⊢ ( I ↾ {𝐼}) = ({𝐼} × {𝐼}) | |
| 13 | xpsng 7072 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) | |
| 14 | 13 | anidms 566 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
| 15 | 12, 14 | eqtr2id 2779 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
| 17 | 11, 16 | eqtrd 2766 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = ( I ↾ {𝐼})) |
| 18 | 17 | ex 412 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀) = {〈𝐼, 𝐼〉} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
| 19 | 10, 18 | sylbid 240 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
| 20 | 8, 19 | mpd 15 | 1 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 {cpr 4575 〈cop 4579 I cid 5508 × cxp 5612 ↾ cres 5616 ⟶wf 6477 ‘cfv 6481 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Grpcgrp 18846 invgcminusg 18847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |