MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grp1inv Structured version   Visualization version   GIF version

Theorem grp1inv 19034
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.)
Hypothesis
Ref Expression
grp1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
grp1inv (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))

Proof of Theorem grp1inv
StepHypRef Expression
1 grp1.m . . . 4 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 19033 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3 snex 5416 . . . . 5 {𝐼} ∈ V
41grpbase 17304 . . . . 5 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
53, 4ax-mp 5 . . . 4 {𝐼} = (Base‘𝑀)
6 eqid 2734 . . . 4 (invg𝑀) = (invg𝑀)
75, 6grpinvf 18972 . . 3 (𝑀 ∈ Grp → (invg𝑀):{𝐼}⟶{𝐼})
82, 7syl 17 . 2 (𝐼𝑉 → (invg𝑀):{𝐼}⟶{𝐼})
9 fsng 7136 . . . 4 ((𝐼𝑉𝐼𝑉) → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
109anidms 566 . . 3 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} ↔ (invg𝑀) = {⟨𝐼, 𝐼⟩}))
11 simpr 484 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = {⟨𝐼, 𝐼⟩})
12 restidsing 6051 . . . . . . 7 ( I ↾ {𝐼}) = ({𝐼} × {𝐼})
13 xpsng 7138 . . . . . . . 8 ((𝐼𝑉𝐼𝑉) → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
1413anidms 566 . . . . . . 7 (𝐼𝑉 → ({𝐼} × {𝐼}) = {⟨𝐼, 𝐼⟩})
1512, 14eqtr2id 2782 . . . . . 6 (𝐼𝑉 → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
1615adantr 480 . . . . 5 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → {⟨𝐼, 𝐼⟩} = ( I ↾ {𝐼}))
1711, 16eqtrd 2769 . . . 4 ((𝐼𝑉 ∧ (invg𝑀) = {⟨𝐼, 𝐼⟩}) → (invg𝑀) = ( I ↾ {𝐼}))
1817ex 412 . . 3 (𝐼𝑉 → ((invg𝑀) = {⟨𝐼, 𝐼⟩} → (invg𝑀) = ( I ↾ {𝐼})))
1910, 18sylbid 240 . 2 (𝐼𝑉 → ((invg𝑀):{𝐼}⟶{𝐼} → (invg𝑀) = ( I ↾ {𝐼})))
208, 19mpd 15 1 (𝐼𝑉 → (invg𝑀) = ( I ↾ {𝐼}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606  {cpr 4608  cop 4612   I cid 5557   × cxp 5663  cres 5667  wf 6536  cfv 6540  ndxcnx 17211  Basecbs 17228  +gcplusg 17272  Grpcgrp 18919  invgcminusg 18920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-struct 17165  df-slot 17200  df-ndx 17212  df-base 17229  df-plusg 17285  df-0g 17456  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-grp 18922  df-minusg 18923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator