![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grp1inv | Structured version Visualization version GIF version |
Description: The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
Ref | Expression |
---|---|
grp1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
Ref | Expression |
---|---|
grp1inv | ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grp1.m | . . . 4 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
2 | 1 | grp1 19078 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) |
3 | snex 5442 | . . . . 5 ⊢ {𝐼} ∈ V | |
4 | 1 | grpbase 17332 | . . . . 5 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ {𝐼} = (Base‘𝑀) |
6 | eqid 2735 | . . . 4 ⊢ (invg‘𝑀) = (invg‘𝑀) | |
7 | 5, 6 | grpinvf 19017 | . . 3 ⊢ (𝑀 ∈ Grp → (invg‘𝑀):{𝐼}⟶{𝐼}) |
8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀):{𝐼}⟶{𝐼}) |
9 | fsng 7157 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) | |
10 | 9 | anidms 566 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} ↔ (invg‘𝑀) = {〈𝐼, 𝐼〉})) |
11 | simpr 484 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = {〈𝐼, 𝐼〉}) | |
12 | restidsing 6073 | . . . . . . 7 ⊢ ( I ↾ {𝐼}) = ({𝐼} × {𝐼}) | |
13 | xpsng 7159 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉) → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) | |
14 | 13 | anidms 566 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({𝐼} × {𝐼}) = {〈𝐼, 𝐼〉}) |
15 | 12, 14 | eqtr2id 2788 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → {〈𝐼, 𝐼〉} = ( I ↾ {𝐼})) |
17 | 11, 16 | eqtrd 2775 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ (invg‘𝑀) = {〈𝐼, 𝐼〉}) → (invg‘𝑀) = ( I ↾ {𝐼})) |
18 | 17 | ex 412 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀) = {〈𝐼, 𝐼〉} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
19 | 10, 18 | sylbid 240 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((invg‘𝑀):{𝐼}⟶{𝐼} → (invg‘𝑀) = ( I ↾ {𝐼}))) |
20 | 8, 19 | mpd 15 | 1 ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 {cpr 4633 〈cop 4637 I cid 5582 × cxp 5687 ↾ cres 5691 ⟶wf 6559 ‘cfv 6563 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 invgcminusg 18965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |