MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauslly Structured version   Visualization version   GIF version

Theorem hauslly 23379
Description: A Hausdorff space is locally Hausdorff. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
hauslly (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus)

Proof of Theorem hauslly
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resthaus 23255 . . . . 5 ((𝑗 ∈ Haus ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ Haus)
21adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ Haus ∧ 𝑥𝑗)) → (𝑗t 𝑥) ∈ Haus)
3 haustop 23218 . . . . . 6 (𝑗 ∈ Haus → 𝑗 ∈ Top)
43ssriv 3950 . . . . 5 Haus ⊆ Top
54a1i 11 . . . 4 (⊤ → Haus ⊆ Top)
62, 5restlly 23370 . . 3 (⊤ → Haus ⊆ Locally Haus)
76mptru 1547 . 2 Haus ⊆ Locally Haus
87sseli 3942 1 (𝐽 ∈ Haus → 𝐽 ∈ Locally Haus)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wtru 1541  wcel 2109  wss 3914  (class class class)co 7387  t crest 17383  Topctop 22780  Hauscha 23195  Locally clly 23351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-map 8801  df-en 8919  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-haus 23202  df-lly 23353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator