MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsucnn Structured version   Visualization version   GIF version

Theorem eldifsucnn 8494
Description: Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.)
Assertion
Ref Expression
eldifsucnn (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eldifsucnn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 peano2 7737 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 nnawordex 8468 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
4 nnacl 8442 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
5 nnaword1 8460 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑦))
6 nnasuc 8437 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
76ancoms 459 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
8 nnacom 8448 . . . . . . . . . . 11 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
91, 8sylan 580 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
10 nnacom 8448 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
11 suceq 6331 . . . . . . . . . . 11 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
1210, 11syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
137, 9, 123eqtr4d 2788 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))
14 sseq2 3947 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → (𝐴𝑥𝐴 ⊆ (𝐴 +o 𝑦)))
15 suceq 6331 . . . . . . . . . . . 12 (𝑥 = (𝐴 +o 𝑦) → suc 𝑥 = suc (𝐴 +o 𝑦))
1615eqeq2d 2749 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → ((suc 𝐴 +o 𝑦) = suc 𝑥 ↔ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦)))
1714, 16anbi12d 631 . . . . . . . . . 10 (𝑥 = (𝐴 +o 𝑦) → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))))
1817rspcev 3561 . . . . . . . . 9 (((𝐴 +o 𝑦) ∈ ω ∧ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
194, 5, 13, 18syl12anc 834 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
20 eqeq1 2742 . . . . . . . . . 10 ((suc 𝐴 +o 𝑦) = 𝐵 → ((suc 𝐴 +o 𝑦) = suc 𝑥𝐵 = suc 𝑥))
2120anbi2d 629 . . . . . . . . 9 ((suc 𝐴 +o 𝑦) = 𝐵 → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴𝑥𝐵 = suc 𝑥)))
2221rexbidv 3226 . . . . . . . 8 ((suc 𝐴 +o 𝑦) = 𝐵 → (∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2319, 22syl5ibcom 244 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2423rexlimdva 3213 . . . . . 6 (𝐴 ∈ ω → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2524adantr 481 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
263, 25sylbid 239 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2726expimpd 454 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
28 peano2 7737 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2928ad2antlr 724 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝑥 ∈ ω)
30 nnord 7720 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
31 nnord 7720 . . . . . . . . 9 (𝑥 ∈ ω → Ord 𝑥)
32 ordsucsssuc 7670 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3330, 31, 32syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3433biimpa 477 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝐴 ⊆ suc 𝑥)
3529, 34jca 512 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥))
36 eleq1 2826 . . . . . . 7 (𝐵 = suc 𝑥 → (𝐵 ∈ ω ↔ suc 𝑥 ∈ ω))
37 sseq2 3947 . . . . . . 7 (𝐵 = suc 𝑥 → (suc 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝑥))
3836, 37anbi12d 631 . . . . . 6 (𝐵 = suc 𝑥 → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥)))
3935, 38syl5ibrcom 246 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (𝐵 = suc 𝑥 → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4039expimpd 454 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4140rexlimdva 3213 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4227, 41impbid 211 . 2 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
43 eldif 3897 . . 3 (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴))
44 nnord 7720 . . . . . 6 (suc 𝐴 ∈ ω → Ord suc 𝐴)
451, 44syl 17 . . . . 5 (𝐴 ∈ ω → Ord suc 𝐴)
46 nnord 7720 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
47 ordtri1 6299 . . . . 5 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4845, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4948pm5.32da 579 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴)))
5043, 49bitr4id 290 . 2 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
51 eldif 3897 . . . . . 6 (𝑥 ∈ (ω ∖ 𝐴) ↔ (𝑥 ∈ ω ∧ ¬ 𝑥𝐴))
5251anbi1i 624 . . . . 5 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ ((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥))
53 anass 469 . . . . 5 (((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5452, 53bitri 274 . . . 4 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5554rexbii2 3179 . . 3 (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥))
56 ordtri1 6299 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5730, 31, 56syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5857anbi1d 630 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) ↔ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5958rexbidva 3225 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥)))
6055, 59bitr4id 290 . 2 (𝐴 ∈ ω → (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
6142, 50, 603bitr4d 311 1 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3884  wss 3887  Ord word 6265  suc csuc 6268  (class class class)co 7275  ωcom 7712   +o coa 8294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-oadd 8301
This theorem is referenced by:  brttrcl2  9472  ttrcltr  9474  rnttrcl  9480
  Copyright terms: Public domain W3C validator