MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsucnn Structured version   Visualization version   GIF version

Theorem eldifsucnn 8579
Description: Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.)
Assertion
Ref Expression
eldifsucnn (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eldifsucnn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 peano2 7820 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 nnawordex 8552 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
4 nnacl 8526 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
5 nnaword1 8544 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑦))
6 nnasuc 8521 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
76ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
8 nnacom 8532 . . . . . . . . . . 11 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
91, 8sylan 580 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
10 nnacom 8532 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
11 suceq 6374 . . . . . . . . . . 11 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
1210, 11syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
137, 9, 123eqtr4d 2776 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))
14 sseq2 3956 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → (𝐴𝑥𝐴 ⊆ (𝐴 +o 𝑦)))
15 suceq 6374 . . . . . . . . . . . 12 (𝑥 = (𝐴 +o 𝑦) → suc 𝑥 = suc (𝐴 +o 𝑦))
1615eqeq2d 2742 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → ((suc 𝐴 +o 𝑦) = suc 𝑥 ↔ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦)))
1714, 16anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝐴 +o 𝑦) → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))))
1817rspcev 3572 . . . . . . . . 9 (((𝐴 +o 𝑦) ∈ ω ∧ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
194, 5, 13, 18syl12anc 836 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
20 eqeq1 2735 . . . . . . . . . 10 ((suc 𝐴 +o 𝑦) = 𝐵 → ((suc 𝐴 +o 𝑦) = suc 𝑥𝐵 = suc 𝑥))
2120anbi2d 630 . . . . . . . . 9 ((suc 𝐴 +o 𝑦) = 𝐵 → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴𝑥𝐵 = suc 𝑥)))
2221rexbidv 3156 . . . . . . . 8 ((suc 𝐴 +o 𝑦) = 𝐵 → (∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2319, 22syl5ibcom 245 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2423rexlimdva 3133 . . . . . 6 (𝐴 ∈ ω → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2524adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
263, 25sylbid 240 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2726expimpd 453 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
28 peano2 7820 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2928ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝑥 ∈ ω)
30 nnord 7804 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
31 nnord 7804 . . . . . . . . 9 (𝑥 ∈ ω → Ord 𝑥)
32 ordsucsssuc 7753 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3330, 31, 32syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3433biimpa 476 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝐴 ⊆ suc 𝑥)
3529, 34jca 511 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥))
36 eleq1 2819 . . . . . . 7 (𝐵 = suc 𝑥 → (𝐵 ∈ ω ↔ suc 𝑥 ∈ ω))
37 sseq2 3956 . . . . . . 7 (𝐵 = suc 𝑥 → (suc 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝑥))
3836, 37anbi12d 632 . . . . . 6 (𝐵 = suc 𝑥 → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥)))
3935, 38syl5ibrcom 247 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (𝐵 = suc 𝑥 → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4039expimpd 453 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4140rexlimdva 3133 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4227, 41impbid 212 . 2 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
43 eldif 3907 . . 3 (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴))
44 nnord 7804 . . . . . 6 (suc 𝐴 ∈ ω → Ord suc 𝐴)
451, 44syl 17 . . . . 5 (𝐴 ∈ ω → Ord suc 𝐴)
46 nnord 7804 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
47 ordtri1 6339 . . . . 5 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4845, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4948pm5.32da 579 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴)))
5043, 49bitr4id 290 . 2 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
51 eldif 3907 . . . . . 6 (𝑥 ∈ (ω ∖ 𝐴) ↔ (𝑥 ∈ ω ∧ ¬ 𝑥𝐴))
5251anbi1i 624 . . . . 5 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ ((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥))
53 anass 468 . . . . 5 (((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5452, 53bitri 275 . . . 4 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5554rexbii2 3075 . . 3 (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥))
56 ordtri1 6339 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5730, 31, 56syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5857anbi1d 631 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) ↔ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5958rexbidva 3154 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥)))
6055, 59bitr4id 290 . 2 (𝐴 ∈ ω → (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
6142, 50, 603bitr4d 311 1 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  cdif 3894  wss 3897  Ord word 6305  suc csuc 6308  (class class class)co 7346  ωcom 7796   +o coa 8382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-oadd 8389
This theorem is referenced by:  brttrcl2  9604  ttrcltr  9606  rnttrcl  9612
  Copyright terms: Public domain W3C validator