MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsucnn Structured version   Visualization version   GIF version

Theorem eldifsucnn 8700
Description: Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.)
Assertion
Ref Expression
eldifsucnn (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eldifsucnn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 peano2 7912 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 nnawordex 8673 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
4 nnacl 8647 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
5 nnaword1 8665 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑦))
6 nnasuc 8642 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
76ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
8 nnacom 8653 . . . . . . . . . . 11 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
91, 8sylan 580 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
10 nnacom 8653 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
11 suceq 6451 . . . . . . . . . . 11 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
1210, 11syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
137, 9, 123eqtr4d 2784 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))
14 sseq2 4021 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → (𝐴𝑥𝐴 ⊆ (𝐴 +o 𝑦)))
15 suceq 6451 . . . . . . . . . . . 12 (𝑥 = (𝐴 +o 𝑦) → suc 𝑥 = suc (𝐴 +o 𝑦))
1615eqeq2d 2745 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → ((suc 𝐴 +o 𝑦) = suc 𝑥 ↔ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦)))
1714, 16anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝐴 +o 𝑦) → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))))
1817rspcev 3621 . . . . . . . . 9 (((𝐴 +o 𝑦) ∈ ω ∧ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
194, 5, 13, 18syl12anc 837 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
20 eqeq1 2738 . . . . . . . . . 10 ((suc 𝐴 +o 𝑦) = 𝐵 → ((suc 𝐴 +o 𝑦) = suc 𝑥𝐵 = suc 𝑥))
2120anbi2d 630 . . . . . . . . 9 ((suc 𝐴 +o 𝑦) = 𝐵 → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴𝑥𝐵 = suc 𝑥)))
2221rexbidv 3176 . . . . . . . 8 ((suc 𝐴 +o 𝑦) = 𝐵 → (∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2319, 22syl5ibcom 245 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2423rexlimdva 3152 . . . . . 6 (𝐴 ∈ ω → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2524adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
263, 25sylbid 240 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2726expimpd 453 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
28 peano2 7912 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2928ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝑥 ∈ ω)
30 nnord 7894 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
31 nnord 7894 . . . . . . . . 9 (𝑥 ∈ ω → Ord 𝑥)
32 ordsucsssuc 7842 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3330, 31, 32syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3433biimpa 476 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝐴 ⊆ suc 𝑥)
3529, 34jca 511 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥))
36 eleq1 2826 . . . . . . 7 (𝐵 = suc 𝑥 → (𝐵 ∈ ω ↔ suc 𝑥 ∈ ω))
37 sseq2 4021 . . . . . . 7 (𝐵 = suc 𝑥 → (suc 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝑥))
3836, 37anbi12d 632 . . . . . 6 (𝐵 = suc 𝑥 → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥)))
3935, 38syl5ibrcom 247 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (𝐵 = suc 𝑥 → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4039expimpd 453 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4140rexlimdva 3152 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4227, 41impbid 212 . 2 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
43 eldif 3972 . . 3 (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴))
44 nnord 7894 . . . . . 6 (suc 𝐴 ∈ ω → Ord suc 𝐴)
451, 44syl 17 . . . . 5 (𝐴 ∈ ω → Ord suc 𝐴)
46 nnord 7894 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
47 ordtri1 6418 . . . . 5 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4845, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4948pm5.32da 579 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴)))
5043, 49bitr4id 290 . 2 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
51 eldif 3972 . . . . . 6 (𝑥 ∈ (ω ∖ 𝐴) ↔ (𝑥 ∈ ω ∧ ¬ 𝑥𝐴))
5251anbi1i 624 . . . . 5 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ ((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥))
53 anass 468 . . . . 5 (((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5452, 53bitri 275 . . . 4 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5554rexbii2 3087 . . 3 (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥))
56 ordtri1 6418 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5730, 31, 56syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5857anbi1d 631 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) ↔ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5958rexbidva 3174 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥)))
6055, 59bitr4id 290 . 2 (𝐴 ∈ ω → (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
6142, 50, 603bitr4d 311 1 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  cdif 3959  wss 3962  Ord word 6384  suc csuc 6387  (class class class)co 7430  ωcom 7886   +o coa 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-oadd 8508
This theorem is referenced by:  brttrcl2  9751  ttrcltr  9753  rnttrcl  9759
  Copyright terms: Public domain W3C validator