MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsucnn Structured version   Visualization version   GIF version

Theorem eldifsucnn 8676
Description: Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.)
Assertion
Ref Expression
eldifsucnn (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eldifsucnn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 peano2 7886 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 nnawordex 8649 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
4 nnacl 8623 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
5 nnaword1 8641 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑦))
6 nnasuc 8618 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
76ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
8 nnacom 8629 . . . . . . . . . . 11 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
91, 8sylan 580 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
10 nnacom 8629 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
11 suceq 6419 . . . . . . . . . . 11 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
1210, 11syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
137, 9, 123eqtr4d 2780 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))
14 sseq2 3985 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → (𝐴𝑥𝐴 ⊆ (𝐴 +o 𝑦)))
15 suceq 6419 . . . . . . . . . . . 12 (𝑥 = (𝐴 +o 𝑦) → suc 𝑥 = suc (𝐴 +o 𝑦))
1615eqeq2d 2746 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → ((suc 𝐴 +o 𝑦) = suc 𝑥 ↔ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦)))
1714, 16anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝐴 +o 𝑦) → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))))
1817rspcev 3601 . . . . . . . . 9 (((𝐴 +o 𝑦) ∈ ω ∧ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
194, 5, 13, 18syl12anc 836 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
20 eqeq1 2739 . . . . . . . . . 10 ((suc 𝐴 +o 𝑦) = 𝐵 → ((suc 𝐴 +o 𝑦) = suc 𝑥𝐵 = suc 𝑥))
2120anbi2d 630 . . . . . . . . 9 ((suc 𝐴 +o 𝑦) = 𝐵 → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴𝑥𝐵 = suc 𝑥)))
2221rexbidv 3164 . . . . . . . 8 ((suc 𝐴 +o 𝑦) = 𝐵 → (∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2319, 22syl5ibcom 245 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2423rexlimdva 3141 . . . . . 6 (𝐴 ∈ ω → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2524adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
263, 25sylbid 240 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2726expimpd 453 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
28 peano2 7886 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2928ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝑥 ∈ ω)
30 nnord 7869 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
31 nnord 7869 . . . . . . . . 9 (𝑥 ∈ ω → Ord 𝑥)
32 ordsucsssuc 7817 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3330, 31, 32syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3433biimpa 476 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝐴 ⊆ suc 𝑥)
3529, 34jca 511 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥))
36 eleq1 2822 . . . . . . 7 (𝐵 = suc 𝑥 → (𝐵 ∈ ω ↔ suc 𝑥 ∈ ω))
37 sseq2 3985 . . . . . . 7 (𝐵 = suc 𝑥 → (suc 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝑥))
3836, 37anbi12d 632 . . . . . 6 (𝐵 = suc 𝑥 → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥)))
3935, 38syl5ibrcom 247 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (𝐵 = suc 𝑥 → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4039expimpd 453 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4140rexlimdva 3141 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4227, 41impbid 212 . 2 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
43 eldif 3936 . . 3 (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴))
44 nnord 7869 . . . . . 6 (suc 𝐴 ∈ ω → Ord suc 𝐴)
451, 44syl 17 . . . . 5 (𝐴 ∈ ω → Ord suc 𝐴)
46 nnord 7869 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
47 ordtri1 6385 . . . . 5 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4845, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4948pm5.32da 579 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴)))
5043, 49bitr4id 290 . 2 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
51 eldif 3936 . . . . . 6 (𝑥 ∈ (ω ∖ 𝐴) ↔ (𝑥 ∈ ω ∧ ¬ 𝑥𝐴))
5251anbi1i 624 . . . . 5 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ ((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥))
53 anass 468 . . . . 5 (((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5452, 53bitri 275 . . . 4 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5554rexbii2 3079 . . 3 (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥))
56 ordtri1 6385 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5730, 31, 56syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5857anbi1d 631 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) ↔ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5958rexbidva 3162 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥)))
6055, 59bitr4id 290 . 2 (𝐴 ∈ ω → (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
6142, 50, 603bitr4d 311 1 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  cdif 3923  wss 3926  Ord word 6351  suc csuc 6354  (class class class)co 7405  ωcom 7861   +o coa 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-oadd 8484
This theorem is referenced by:  brttrcl2  9728  ttrcltr  9730  rnttrcl  9736
  Copyright terms: Public domain W3C validator