MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifsucnn Structured version   Visualization version   GIF version

Theorem eldifsucnn 8605
Description: Condition for membership in the difference of ω and a nonzero finite ordinal. (Contributed by Scott Fenton, 24-Oct-2024.)
Assertion
Ref Expression
eldifsucnn (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem eldifsucnn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 peano2 7846 . . . . . 6 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 nnawordex 8578 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵))
4 nnacl 8552 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) ∈ ω)
5 nnaword1 8570 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → 𝐴 ⊆ (𝐴 +o 𝑦))
6 nnasuc 8547 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
76ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +o suc 𝐴) = suc (𝑦 +o 𝐴))
8 nnacom 8558 . . . . . . . . . . 11 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
91, 8sylan 580 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = (𝑦 +o suc 𝐴))
10 nnacom 8558 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +o 𝑦) = (𝑦 +o 𝐴))
11 suceq 6388 . . . . . . . . . . 11 ((𝐴 +o 𝑦) = (𝑦 +o 𝐴) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
1210, 11syl 17 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +o 𝑦) = suc (𝑦 +o 𝐴))
137, 9, 123eqtr4d 2774 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))
14 sseq2 3970 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → (𝐴𝑥𝐴 ⊆ (𝐴 +o 𝑦)))
15 suceq 6388 . . . . . . . . . . . 12 (𝑥 = (𝐴 +o 𝑦) → suc 𝑥 = suc (𝐴 +o 𝑦))
1615eqeq2d 2740 . . . . . . . . . . 11 (𝑥 = (𝐴 +o 𝑦) → ((suc 𝐴 +o 𝑦) = suc 𝑥 ↔ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦)))
1714, 16anbi12d 632 . . . . . . . . . 10 (𝑥 = (𝐴 +o 𝑦) → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))))
1817rspcev 3585 . . . . . . . . 9 (((𝐴 +o 𝑦) ∈ ω ∧ (𝐴 ⊆ (𝐴 +o 𝑦) ∧ (suc 𝐴 +o 𝑦) = suc (𝐴 +o 𝑦))) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
194, 5, 13, 18syl12anc 836 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥))
20 eqeq1 2733 . . . . . . . . . 10 ((suc 𝐴 +o 𝑦) = 𝐵 → ((suc 𝐴 +o 𝑦) = suc 𝑥𝐵 = suc 𝑥))
2120anbi2d 630 . . . . . . . . 9 ((suc 𝐴 +o 𝑦) = 𝐵 → ((𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ (𝐴𝑥𝐵 = suc 𝑥)))
2221rexbidv 3157 . . . . . . . 8 ((suc 𝐴 +o 𝑦) = 𝐵 → (∃𝑥 ∈ ω (𝐴𝑥 ∧ (suc 𝐴 +o 𝑦) = suc 𝑥) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2319, 22syl5ibcom 245 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2423rexlimdva 3134 . . . . . 6 (𝐴 ∈ ω → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2524adantr 480 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑦 ∈ ω (suc 𝐴 +o 𝑦) = 𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
263, 25sylbid 240 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
2726expimpd 453 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) → ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
28 peano2 7846 . . . . . . . 8 (𝑥 ∈ ω → suc 𝑥 ∈ ω)
2928ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝑥 ∈ ω)
30 nnord 7830 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
31 nnord 7830 . . . . . . . . 9 (𝑥 ∈ ω → Ord 𝑥)
32 ordsucsssuc 7778 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3330, 31, 32syl2an 596 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ suc 𝐴 ⊆ suc 𝑥))
3433biimpa 476 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → suc 𝐴 ⊆ suc 𝑥)
3529, 34jca 511 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥))
36 eleq1 2816 . . . . . . 7 (𝐵 = suc 𝑥 → (𝐵 ∈ ω ↔ suc 𝑥 ∈ ω))
37 sseq2 3970 . . . . . . 7 (𝐵 = suc 𝑥 → (suc 𝐴𝐵 ↔ suc 𝐴 ⊆ suc 𝑥))
3836, 37anbi12d 632 . . . . . 6 (𝐵 = suc 𝑥 → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (suc 𝑥 ∈ ω ∧ suc 𝐴 ⊆ suc 𝑥)))
3935, 38syl5ibrcom 247 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ 𝐴𝑥) → (𝐵 = suc 𝑥 → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4039expimpd 453 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4140rexlimdva 3134 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) → (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
4227, 41impbid 212 . 2 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
43 eldif 3921 . . 3 (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴))
44 nnord 7830 . . . . . 6 (suc 𝐴 ∈ ω → Ord suc 𝐴)
451, 44syl 17 . . . . 5 (𝐴 ∈ ω → Ord suc 𝐴)
46 nnord 7830 . . . . 5 (𝐵 ∈ ω → Ord 𝐵)
47 ordtri1 6353 . . . . 5 ((Ord suc 𝐴 ∧ Ord 𝐵) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4845, 46, 47syl2an 596 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴))
4948pm5.32da 579 . . 3 (𝐴 ∈ ω → ((𝐵 ∈ ω ∧ suc 𝐴𝐵) ↔ (𝐵 ∈ ω ∧ ¬ 𝐵 ∈ suc 𝐴)))
5043, 49bitr4id 290 . 2 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ (𝐵 ∈ ω ∧ suc 𝐴𝐵)))
51 eldif 3921 . . . . . 6 (𝑥 ∈ (ω ∖ 𝐴) ↔ (𝑥 ∈ ω ∧ ¬ 𝑥𝐴))
5251anbi1i 624 . . . . 5 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ ((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥))
53 anass 468 . . . . 5 (((𝑥 ∈ ω ∧ ¬ 𝑥𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5452, 53bitri 275 . . . 4 ((𝑥 ∈ (ω ∖ 𝐴) ∧ 𝐵 = suc 𝑥) ↔ (𝑥 ∈ ω ∧ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5554rexbii2 3072 . . 3 (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥))
56 ordtri1 6353 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝑥) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5730, 31, 56syl2an 596 . . . . 5 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
5857anbi1d 631 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴𝑥𝐵 = suc 𝑥) ↔ (¬ 𝑥𝐴𝐵 = suc 𝑥)))
5958rexbidva 3155 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥) ↔ ∃𝑥 ∈ ω (¬ 𝑥𝐴𝐵 = suc 𝑥)))
6055, 59bitr4id 290 . 2 (𝐴 ∈ ω → (∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥 ↔ ∃𝑥 ∈ ω (𝐴𝑥𝐵 = suc 𝑥)))
6142, 50, 603bitr4d 311 1 (𝐴 ∈ ω → (𝐵 ∈ (ω ∖ suc 𝐴) ↔ ∃𝑥 ∈ (ω ∖ 𝐴)𝐵 = suc 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3908  wss 3911  Ord word 6319  suc csuc 6322  (class class class)co 7369  ωcom 7822   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by:  brttrcl2  9643  ttrcltr  9645  rnttrcl  9651
  Copyright terms: Public domain W3C validator