MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic Structured version   Visualization version   GIF version

Theorem cubic 24796
Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4379 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cubic.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
cubic.a (𝜑𝐴 ∈ ℂ)
cubic.z (𝜑𝐴 ≠ 0)
cubic.b (𝜑𝐵 ∈ ℂ)
cubic.c (𝜑𝐶 ∈ ℂ)
cubic.d (𝜑𝐷 ∈ ℂ)
cubic.x (𝜑𝑋 ∈ ℂ)
cubic.t (𝜑𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)))
cubic.g (𝜑𝐺 = ((𝑁↑2) − (4 · (𝑀↑3))))
cubic.m (𝜑𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶))))
cubic.n (𝜑𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (27 · ((𝐴↑2) · 𝐷))))
cubic.0 (𝜑𝑀 ≠ 0)
Assertion
Ref Expression
cubic (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑀,𝑟   𝑁,𝑟   𝜑,𝑟   𝑇,𝑟   𝑋,𝑟
Allowed substitution hints:   𝐶(𝑟)   𝐷(𝑟)   𝑅(𝑟)   𝐺(𝑟)

Proof of Theorem cubic
StepHypRef Expression
1 cubic.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cubic.z . . 3 (𝜑𝐴 ≠ 0)
3 cubic.b . . 3 (𝜑𝐵 ∈ ℂ)
4 cubic.c . . 3 (𝜑𝐶 ∈ ℂ)
5 cubic.d . . 3 (𝜑𝐷 ∈ ℂ)
6 cubic.x . . 3 (𝜑𝑋 ∈ ℂ)
7 cubic.t . . . 4 (𝜑𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)))
8 cubic.n . . . . . . . 8 (𝜑𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (27 · ((𝐴↑2) · 𝐷))))
9 2cn 11296 . . . . . . . . . . 11 2 ∈ ℂ
10 3nn0 11516 . . . . . . . . . . . 12 3 ∈ ℕ0
11 expcl 13084 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
123, 10, 11sylancl 574 . . . . . . . . . . 11 (𝜑 → (𝐵↑3) ∈ ℂ)
13 mulcl 10225 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝐵↑3) ∈ ℂ) → (2 · (𝐵↑3)) ∈ ℂ)
149, 12, 13sylancr 575 . . . . . . . . . 10 (𝜑 → (2 · (𝐵↑3)) ∈ ℂ)
15 9cn 11313 . . . . . . . . . . . 12 9 ∈ ℂ
16 mulcl 10225 . . . . . . . . . . . 12 ((9 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (9 · 𝐴) ∈ ℂ)
1715, 1, 16sylancr 575 . . . . . . . . . . 11 (𝜑 → (9 · 𝐴) ∈ ℂ)
183, 4mulcld 10265 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝐶) ∈ ℂ)
1917, 18mulcld 10265 . . . . . . . . . 10 (𝜑 → ((9 · 𝐴) · (𝐵 · 𝐶)) ∈ ℂ)
2014, 19subcld 10597 . . . . . . . . 9 (𝜑 → ((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) ∈ ℂ)
21 2nn0 11515 . . . . . . . . . . . 12 2 ∈ ℕ0
22 7nn 11396 . . . . . . . . . . . 12 7 ∈ ℕ
2321, 22decnncl 11724 . . . . . . . . . . 11 27 ∈ ℕ
2423nncni 11235 . . . . . . . . . 10 27 ∈ ℂ
251sqcld 13212 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
2625, 5mulcld 10265 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) · 𝐷) ∈ ℂ)
27 mulcl 10225 . . . . . . . . . 10 ((27 ∈ ℂ ∧ ((𝐴↑2) · 𝐷) ∈ ℂ) → (27 · ((𝐴↑2) · 𝐷)) ∈ ℂ)
2824, 26, 27sylancr 575 . . . . . . . . 9 (𝜑 → (27 · ((𝐴↑2) · 𝐷)) ∈ ℂ)
2920, 28addcld 10264 . . . . . . . 8 (𝜑 → (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (27 · ((𝐴↑2) · 𝐷))) ∈ ℂ)
308, 29eqeltrd 2850 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
31 cubic.g . . . . . . . . 9 (𝜑𝐺 = ((𝑁↑2) − (4 · (𝑀↑3))))
3230sqcld 13212 . . . . . . . . . 10 (𝜑 → (𝑁↑2) ∈ ℂ)
33 4cn 11303 . . . . . . . . . . 11 4 ∈ ℂ
34 cubic.m . . . . . . . . . . . . 13 (𝜑𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶))))
353sqcld 13212 . . . . . . . . . . . . . 14 (𝜑 → (𝐵↑2) ∈ ℂ)
36 3cn 11300 . . . . . . . . . . . . . . 15 3 ∈ ℂ
371, 4mulcld 10265 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
38 mulcl 10225 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (3 · (𝐴 · 𝐶)) ∈ ℂ)
3936, 37, 38sylancr 575 . . . . . . . . . . . . . 14 (𝜑 → (3 · (𝐴 · 𝐶)) ∈ ℂ)
4035, 39subcld 10597 . . . . . . . . . . . . 13 (𝜑 → ((𝐵↑2) − (3 · (𝐴 · 𝐶))) ∈ ℂ)
4134, 40eqeltrd 2850 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
42 expcl 13084 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
4341, 10, 42sylancl 574 . . . . . . . . . . 11 (𝜑 → (𝑀↑3) ∈ ℂ)
44 mulcl 10225 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (𝑀↑3) ∈ ℂ) → (4 · (𝑀↑3)) ∈ ℂ)
4533, 43, 44sylancr 575 . . . . . . . . . 10 (𝜑 → (4 · (𝑀↑3)) ∈ ℂ)
4632, 45subcld 10597 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − (4 · (𝑀↑3))) ∈ ℂ)
4731, 46eqeltrd 2850 . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
4847sqrtcld 14383 . . . . . . 7 (𝜑 → (√‘𝐺) ∈ ℂ)
4930, 48addcld 10264 . . . . . 6 (𝜑 → (𝑁 + (√‘𝐺)) ∈ ℂ)
5049halfcld 11483 . . . . 5 (𝜑 → ((𝑁 + (√‘𝐺)) / 2) ∈ ℂ)
51 3ne0 11320 . . . . . 6 3 ≠ 0
5236, 51reccli 10960 . . . . 5 (1 / 3) ∈ ℂ
53 cxpcl 24640 . . . . 5 ((((𝑁 + (√‘𝐺)) / 2) ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)) ∈ ℂ)
5450, 52, 53sylancl 574 . . . 4 (𝜑 → (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)) ∈ ℂ)
557, 54eqeltrd 2850 . . 3 (𝜑𝑇 ∈ ℂ)
567oveq1d 6810 . . . 4 (𝜑 → (𝑇↑3) = ((((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))↑3))
57 3nn 11392 . . . . 5 3 ∈ ℕ
58 cxproot 24656 . . . . 5 ((((𝑁 + (√‘𝐺)) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))↑3) = ((𝑁 + (√‘𝐺)) / 2))
5950, 57, 58sylancl 574 . . . 4 (𝜑 → ((((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))↑3) = ((𝑁 + (√‘𝐺)) / 2))
6056, 59eqtrd 2805 . . 3 (𝜑 → (𝑇↑3) = ((𝑁 + (√‘𝐺)) / 2))
6147sqsqrtd 14385 . . . 4 (𝜑 → ((√‘𝐺)↑2) = 𝐺)
6261, 31eqtrd 2805 . . 3 (𝜑 → ((√‘𝐺)↑2) = ((𝑁↑2) − (4 · (𝑀↑3))))
639a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
6433a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
65 4ne0 11322 . . . . . . . . . 10 4 ≠ 0
6665a1i 11 . . . . . . . . 9 (𝜑 → 4 ≠ 0)
67 cubic.0 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
68 3z 11616 . . . . . . . . . . 11 3 ∈ ℤ
6968a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℤ)
7041, 67, 69expne0d 13220 . . . . . . . . 9 (𝜑 → (𝑀↑3) ≠ 0)
7164, 43, 66, 70mulne0d 10884 . . . . . . . 8 (𝜑 → (4 · (𝑀↑3)) ≠ 0)
7262oveq2d 6811 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − ((√‘𝐺)↑2)) = ((𝑁↑2) − ((𝑁↑2) − (4 · (𝑀↑3)))))
73 subsq 13178 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ (√‘𝐺) ∈ ℂ) → ((𝑁↑2) − ((√‘𝐺)↑2)) = ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))))
7430, 48, 73syl2anc 573 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − ((√‘𝐺)↑2)) = ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))))
7532, 45nncand 10602 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − ((𝑁↑2) − (4 · (𝑀↑3)))) = (4 · (𝑀↑3)))
7672, 74, 753eqtr3d 2813 . . . . . . . 8 (𝜑 → ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) = (4 · (𝑀↑3)))
7730, 48subcld 10597 . . . . . . . . 9 (𝜑 → (𝑁 − (√‘𝐺)) ∈ ℂ)
7877mul02d 10439 . . . . . . . 8 (𝜑 → (0 · (𝑁 − (√‘𝐺))) = 0)
7971, 76, 783netr4d 3020 . . . . . . 7 (𝜑 → ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) ≠ (0 · (𝑁 − (√‘𝐺))))
80 oveq1 6802 . . . . . . . 8 ((𝑁 + (√‘𝐺)) = 0 → ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) = (0 · (𝑁 − (√‘𝐺))))
8180necon3i 2975 . . . . . . 7 (((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) ≠ (0 · (𝑁 − (√‘𝐺))) → (𝑁 + (√‘𝐺)) ≠ 0)
8279, 81syl 17 . . . . . 6 (𝜑 → (𝑁 + (√‘𝐺)) ≠ 0)
83 2ne0 11318 . . . . . . 7 2 ≠ 0
8483a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
8549, 63, 82, 84divne0d 11022 . . . . 5 (𝜑 → ((𝑁 + (√‘𝐺)) / 2) ≠ 0)
8652a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℂ)
8750, 85, 86cxpne0d 24679 . . . 4 (𝜑 → (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)) ≠ 0)
887, 87eqnetrd 3010 . . 3 (𝜑𝑇 ≠ 0)
891, 2, 3, 4, 5, 6, 55, 60, 48, 62, 34, 8, 88cubic2 24795 . 2 (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))))
90 cubic.r . . . . . 6 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
91901cubr 24789 . . . . 5 (𝑟𝑅 ↔ (𝑟 ∈ ℂ ∧ (𝑟↑3) = 1))
9291anbi1i 610 . . . 4 ((𝑟𝑅𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))) ↔ ((𝑟 ∈ ℂ ∧ (𝑟↑3) = 1) ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
93 anass 454 . . . 4 (((𝑟 ∈ ℂ ∧ (𝑟↑3) = 1) ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))) ↔ (𝑟 ∈ ℂ ∧ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))))
9492, 93bitri 264 . . 3 ((𝑟𝑅𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))) ↔ (𝑟 ∈ ℂ ∧ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))))
9594rexbii2 3187 . 2 (∃𝑟𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)) ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
9689, 95syl6bbr 278 1 (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wrex 3062  {ctp 4321  cfv 6030  (class class class)co 6795  cc 10139  0cc0 10141  1c1 10142  ici 10143   + caddc 10144   · cmul 10146  cmin 10471  -cneg 10472   / cdiv 10889  cn 11225  2c2 11275  3c3 11276  4c4 11277  7c7 11280  9c9 11282  0cn0 11498  cz 11583  cdc 11699  cexp 13066  csqrt 14180  𝑐ccxp 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220  ax-mulf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-of 7047  df-om 7216  df-1st 7318  df-2nd 7319  df-supp 7450  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-2o 7717  df-oadd 7720  df-er 7899  df-map 8014  df-pm 8015  df-ixp 8066  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-fsupp 8435  df-fi 8476  df-sup 8507  df-inf 8508  df-oi 8574  df-card 8968  df-cda 9195  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-z 11584  df-dec 11700  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ioc 12384  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-fac 13264  df-bc 13293  df-hash 13321  df-shft 14014  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-limsup 14409  df-clim 14426  df-rlim 14427  df-sum 14624  df-ef 15003  df-sin 15005  df-cos 15006  df-pi 15008  df-dvds 15189  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cld 21043  df-ntr 21044  df-cls 21045  df-nei 21122  df-lp 21160  df-perf 21161  df-cn 21251  df-cnp 21252  df-haus 21339  df-tx 21585  df-hmeo 21778  df-fil 21869  df-fm 21961  df-flim 21962  df-flf 21963  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900  df-limc 23849  df-dv 23850  df-log 24523  df-cxp 24524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator