Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cubic Structured version   Visualization version   GIF version

Theorem cubic 25027
 Description: The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4473 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
cubic.r 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
cubic.a (𝜑𝐴 ∈ ℂ)
cubic.z (𝜑𝐴 ≠ 0)
cubic.b (𝜑𝐵 ∈ ℂ)
cubic.c (𝜑𝐶 ∈ ℂ)
cubic.d (𝜑𝐷 ∈ ℂ)
cubic.x (𝜑𝑋 ∈ ℂ)
cubic.t (𝜑𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)))
cubic.g (𝜑𝐺 = ((𝑁↑2) − (4 · (𝑀↑3))))
cubic.m (𝜑𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶))))
cubic.n (𝜑𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (27 · ((𝐴↑2) · 𝐷))))
cubic.0 (𝜑𝑀 ≠ 0)
Assertion
Ref Expression
cubic (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
Distinct variable groups:   𝐴,𝑟   𝐵,𝑟   𝑀,𝑟   𝑁,𝑟   𝜑,𝑟   𝑇,𝑟   𝑋,𝑟
Allowed substitution hints:   𝐶(𝑟)   𝐷(𝑟)   𝑅(𝑟)   𝐺(𝑟)

Proof of Theorem cubic
StepHypRef Expression
1 cubic.a . . 3 (𝜑𝐴 ∈ ℂ)
2 cubic.z . . 3 (𝜑𝐴 ≠ 0)
3 cubic.b . . 3 (𝜑𝐵 ∈ ℂ)
4 cubic.c . . 3 (𝜑𝐶 ∈ ℂ)
5 cubic.d . . 3 (𝜑𝐷 ∈ ℂ)
6 cubic.x . . 3 (𝜑𝑋 ∈ ℂ)
7 cubic.t . . . 4 (𝜑𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)))
8 cubic.n . . . . . . . 8 (𝜑𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (27 · ((𝐴↑2) · 𝐷))))
9 2cn 11450 . . . . . . . . . . 11 2 ∈ ℂ
10 3nn0 11662 . . . . . . . . . . . 12 3 ∈ ℕ0
11 expcl 13196 . . . . . . . . . . . 12 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
123, 10, 11sylancl 580 . . . . . . . . . . 11 (𝜑 → (𝐵↑3) ∈ ℂ)
13 mulcl 10356 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (𝐵↑3) ∈ ℂ) → (2 · (𝐵↑3)) ∈ ℂ)
149, 12, 13sylancr 581 . . . . . . . . . 10 (𝜑 → (2 · (𝐵↑3)) ∈ ℂ)
15 9cn 11481 . . . . . . . . . . . 12 9 ∈ ℂ
16 mulcl 10356 . . . . . . . . . . . 12 ((9 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (9 · 𝐴) ∈ ℂ)
1715, 1, 16sylancr 581 . . . . . . . . . . 11 (𝜑 → (9 · 𝐴) ∈ ℂ)
183, 4mulcld 10397 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝐶) ∈ ℂ)
1917, 18mulcld 10397 . . . . . . . . . 10 (𝜑 → ((9 · 𝐴) · (𝐵 · 𝐶)) ∈ ℂ)
2014, 19subcld 10734 . . . . . . . . 9 (𝜑 → ((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) ∈ ℂ)
21 2nn0 11661 . . . . . . . . . . . 12 2 ∈ ℕ0
22 7nn 11471 . . . . . . . . . . . 12 7 ∈ ℕ
2321, 22decnncl 11866 . . . . . . . . . . 11 27 ∈ ℕ
2423nncni 11385 . . . . . . . . . 10 27 ∈ ℂ
251sqcld 13325 . . . . . . . . . . 11 (𝜑 → (𝐴↑2) ∈ ℂ)
2625, 5mulcld 10397 . . . . . . . . . 10 (𝜑 → ((𝐴↑2) · 𝐷) ∈ ℂ)
27 mulcl 10356 . . . . . . . . . 10 ((27 ∈ ℂ ∧ ((𝐴↑2) · 𝐷) ∈ ℂ) → (27 · ((𝐴↑2) · 𝐷)) ∈ ℂ)
2824, 26, 27sylancr 581 . . . . . . . . 9 (𝜑 → (27 · ((𝐴↑2) · 𝐷)) ∈ ℂ)
2920, 28addcld 10396 . . . . . . . 8 (𝜑 → (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (27 · ((𝐴↑2) · 𝐷))) ∈ ℂ)
308, 29eqeltrd 2859 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
31 cubic.g . . . . . . . . 9 (𝜑𝐺 = ((𝑁↑2) − (4 · (𝑀↑3))))
3230sqcld 13325 . . . . . . . . . 10 (𝜑 → (𝑁↑2) ∈ ℂ)
33 4cn 11461 . . . . . . . . . . 11 4 ∈ ℂ
34 cubic.m . . . . . . . . . . . . 13 (𝜑𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶))))
353sqcld 13325 . . . . . . . . . . . . . 14 (𝜑 → (𝐵↑2) ∈ ℂ)
36 3cn 11456 . . . . . . . . . . . . . . 15 3 ∈ ℂ
371, 4mulcld 10397 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
38 mulcl 10356 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (3 · (𝐴 · 𝐶)) ∈ ℂ)
3936, 37, 38sylancr 581 . . . . . . . . . . . . . 14 (𝜑 → (3 · (𝐴 · 𝐶)) ∈ ℂ)
4035, 39subcld 10734 . . . . . . . . . . . . 13 (𝜑 → ((𝐵↑2) − (3 · (𝐴 · 𝐶))) ∈ ℂ)
4134, 40eqeltrd 2859 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℂ)
42 expcl 13196 . . . . . . . . . . . 12 ((𝑀 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑀↑3) ∈ ℂ)
4341, 10, 42sylancl 580 . . . . . . . . . . 11 (𝜑 → (𝑀↑3) ∈ ℂ)
44 mulcl 10356 . . . . . . . . . . 11 ((4 ∈ ℂ ∧ (𝑀↑3) ∈ ℂ) → (4 · (𝑀↑3)) ∈ ℂ)
4533, 43, 44sylancr 581 . . . . . . . . . 10 (𝜑 → (4 · (𝑀↑3)) ∈ ℂ)
4632, 45subcld 10734 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − (4 · (𝑀↑3))) ∈ ℂ)
4731, 46eqeltrd 2859 . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
4847sqrtcld 14584 . . . . . . 7 (𝜑 → (√‘𝐺) ∈ ℂ)
4930, 48addcld 10396 . . . . . 6 (𝜑 → (𝑁 + (√‘𝐺)) ∈ ℂ)
5049halfcld 11627 . . . . 5 (𝜑 → ((𝑁 + (√‘𝐺)) / 2) ∈ ℂ)
51 3ne0 11488 . . . . . 6 3 ≠ 0
5236, 51reccli 11105 . . . . 5 (1 / 3) ∈ ℂ
53 cxpcl 24857 . . . . 5 ((((𝑁 + (√‘𝐺)) / 2) ∈ ℂ ∧ (1 / 3) ∈ ℂ) → (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)) ∈ ℂ)
5450, 52, 53sylancl 580 . . . 4 (𝜑 → (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)) ∈ ℂ)
557, 54eqeltrd 2859 . . 3 (𝜑𝑇 ∈ ℂ)
567oveq1d 6937 . . . 4 (𝜑 → (𝑇↑3) = ((((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))↑3))
57 3nn 11454 . . . . 5 3 ∈ ℕ
58 cxproot 24873 . . . . 5 ((((𝑁 + (√‘𝐺)) / 2) ∈ ℂ ∧ 3 ∈ ℕ) → ((((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))↑3) = ((𝑁 + (√‘𝐺)) / 2))
5950, 57, 58sylancl 580 . . . 4 (𝜑 → ((((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))↑3) = ((𝑁 + (√‘𝐺)) / 2))
6056, 59eqtrd 2814 . . 3 (𝜑 → (𝑇↑3) = ((𝑁 + (√‘𝐺)) / 2))
6147sqsqrtd 14586 . . . 4 (𝜑 → ((√‘𝐺)↑2) = 𝐺)
6261, 31eqtrd 2814 . . 3 (𝜑 → ((√‘𝐺)↑2) = ((𝑁↑2) − (4 · (𝑀↑3))))
639a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℂ)
6433a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
65 4ne0 11490 . . . . . . . . . 10 4 ≠ 0
6665a1i 11 . . . . . . . . 9 (𝜑 → 4 ≠ 0)
67 cubic.0 . . . . . . . . . 10 (𝜑𝑀 ≠ 0)
68 3z 11762 . . . . . . . . . . 11 3 ∈ ℤ
6968a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℤ)
7041, 67, 69expne0d 13333 . . . . . . . . 9 (𝜑 → (𝑀↑3) ≠ 0)
7164, 43, 66, 70mulne0d 11027 . . . . . . . 8 (𝜑 → (4 · (𝑀↑3)) ≠ 0)
7262oveq2d 6938 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − ((√‘𝐺)↑2)) = ((𝑁↑2) − ((𝑁↑2) − (4 · (𝑀↑3)))))
73 subsq 13291 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ (√‘𝐺) ∈ ℂ) → ((𝑁↑2) − ((√‘𝐺)↑2)) = ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))))
7430, 48, 73syl2anc 579 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − ((√‘𝐺)↑2)) = ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))))
7532, 45nncand 10739 . . . . . . . . 9 (𝜑 → ((𝑁↑2) − ((𝑁↑2) − (4 · (𝑀↑3)))) = (4 · (𝑀↑3)))
7672, 74, 753eqtr3d 2822 . . . . . . . 8 (𝜑 → ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) = (4 · (𝑀↑3)))
7730, 48subcld 10734 . . . . . . . . 9 (𝜑 → (𝑁 − (√‘𝐺)) ∈ ℂ)
7877mul02d 10574 . . . . . . . 8 (𝜑 → (0 · (𝑁 − (√‘𝐺))) = 0)
7971, 76, 783netr4d 3046 . . . . . . 7 (𝜑 → ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) ≠ (0 · (𝑁 − (√‘𝐺))))
80 oveq1 6929 . . . . . . . 8 ((𝑁 + (√‘𝐺)) = 0 → ((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) = (0 · (𝑁 − (√‘𝐺))))
8180necon3i 3001 . . . . . . 7 (((𝑁 + (√‘𝐺)) · (𝑁 − (√‘𝐺))) ≠ (0 · (𝑁 − (√‘𝐺))) → (𝑁 + (√‘𝐺)) ≠ 0)
8279, 81syl 17 . . . . . 6 (𝜑 → (𝑁 + (√‘𝐺)) ≠ 0)
83 2ne0 11486 . . . . . . 7 2 ≠ 0
8483a1i 11 . . . . . 6 (𝜑 → 2 ≠ 0)
8549, 63, 82, 84divne0d 11167 . . . . 5 (𝜑 → ((𝑁 + (√‘𝐺)) / 2) ≠ 0)
8652a1i 11 . . . . 5 (𝜑 → (1 / 3) ∈ ℂ)
8750, 85, 86cxpne0d 24896 . . . 4 (𝜑 → (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3)) ≠ 0)
887, 87eqnetrd 3036 . . 3 (𝜑𝑇 ≠ 0)
891, 2, 3, 4, 5, 6, 55, 60, 48, 62, 34, 8, 88cubic2 25026 . 2 (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))))
90 cubic.r . . . . . 6 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)}
91901cubr 25020 . . . . 5 (𝑟𝑅 ↔ (𝑟 ∈ ℂ ∧ (𝑟↑3) = 1))
9291anbi1i 617 . . . 4 ((𝑟𝑅𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))) ↔ ((𝑟 ∈ ℂ ∧ (𝑟↑3) = 1) ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
93 anass 462 . . . 4 (((𝑟 ∈ ℂ ∧ (𝑟↑3) = 1) ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))) ↔ (𝑟 ∈ ℂ ∧ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))))
9492, 93bitri 267 . . 3 ((𝑟𝑅𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))) ↔ (𝑟 ∈ ℂ ∧ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))))
9594rexbii2 3222 . 2 (∃𝑟𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)) ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
9689, 95syl6bbr 281 1 (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∃wrex 3091  {ctp 4402  ‘cfv 6135  (class class class)co 6922  ℂcc 10270  0cc0 10272  1c1 10273  ici 10274   + caddc 10275   · cmul 10277   − cmin 10606  -cneg 10607   / cdiv 11032  ℕcn 11374  2c2 11430  3c3 11431  4c4 11432  7c7 11435  9c9 11437  ℕ0cn0 11642  ℤcz 11728  ;cdc 11845  ↑cexp 13178  √csqrt 14380  ↑𝑐ccxp 24739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-dvds 15388  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-cxp 24741 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator