Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmfn Structured version   Visualization version   GIF version

Theorem rnghmfn 45336
Description: The mapping of two non-unital rings to the non-unital ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.)
Assertion
Ref Expression
rnghmfn RngHomo Fn (Rng × Rng)

Proof of Theorem rnghmfn
Dummy variables 𝑠 𝑟 𝑣 𝑤 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rnghomo 45333 . 2 RngHomo = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
2 ovex 7288 . . . . 5 (𝑤m 𝑣) ∈ V
32rabex 5251 . . . 4 {𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
43csbex 5230 . . 3 (Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
54csbex 5230 . 2 (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))} ∈ V
61, 5fnmpoi 7883 1 RngHomo Fn (Rng × Rng)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wral 3063  {crab 3067  csb 3828   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-rnghomo 45333
This theorem is referenced by:  rnghmresfn  45409  dfrngc2  45418  rnghmsscmap2  45419  rnghmsscmap  45420  rhmsscrnghm  45472  rngcresringcat  45476
  Copyright terms: Public domain W3C validator