![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnghmco | Structured version Visualization version GIF version |
Description: The composition of non-unital ring homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.) |
Ref | Expression |
---|---|
rnghmco | ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RngHom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmrcl 20329 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RngHom 𝑈) → (𝑇 ∈ Rng ∧ 𝑈 ∈ Rng)) | |
2 | 1 | simprd 496 | . . 3 ⊢ (𝐹 ∈ (𝑇 RngHom 𝑈) → 𝑈 ∈ Rng) |
3 | rnghmrcl 20329 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RngHom 𝑇) → (𝑆 ∈ Rng ∧ 𝑇 ∈ Rng)) | |
4 | 3 | simpld 495 | . . 3 ⊢ (𝐺 ∈ (𝑆 RngHom 𝑇) → 𝑆 ∈ Rng) |
5 | 2, 4 | anim12ci 614 | . 2 ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝑆 ∈ Rng ∧ 𝑈 ∈ Rng)) |
6 | rnghmghm 20338 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RngHom 𝑈) → 𝐹 ∈ (𝑇 GrpHom 𝑈)) | |
7 | rnghmghm 20338 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RngHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
8 | ghmco 19150 | . . . 4 ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | |
9 | 6, 7, 8 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
10 | eqid 2732 | . . . . 5 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
11 | eqid 2732 | . . . . 5 ⊢ (mulGrp‘𝑈) = (mulGrp‘𝑈) | |
12 | 10, 11 | rnghmmgmhm 20334 | . . . 4 ⊢ (𝐹 ∈ (𝑇 RngHom 𝑈) → 𝐹 ∈ ((mulGrp‘𝑇) MgmHom (mulGrp‘𝑈))) |
13 | eqid 2732 | . . . . 5 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
14 | 13, 10 | rnghmmgmhm 20334 | . . . 4 ⊢ (𝐺 ∈ (𝑆 RngHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) |
15 | mgmhmco 18639 | . . . 4 ⊢ ((𝐹 ∈ ((mulGrp‘𝑇) MgmHom (mulGrp‘𝑈)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑇))) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈))) | |
16 | 12, 14, 15 | syl2an 596 | . . 3 ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈))) |
17 | 9, 16 | jca 512 | . 2 ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈)))) |
18 | 13, 11 | isrnghmmul 20333 | . 2 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑆 RngHom 𝑈) ↔ ((𝑆 ∈ Rng ∧ 𝑈 ∈ Rng) ∧ ((𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈) ∧ (𝐹 ∘ 𝐺) ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑈))))) |
19 | 5, 17, 18 | sylanbrc 583 | 1 ⊢ ((𝐹 ∈ (𝑇 RngHom 𝑈) ∧ 𝐺 ∈ (𝑆 RngHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RngHom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7411 MgmHom cmgmhm 18615 GrpHom cghm 19127 mulGrpcmgp 20028 Rngcrng 20046 RngHom crnghm 20325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-0g 17391 df-mgm 18565 df-mgmhm 18617 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-ghm 19128 df-abl 19692 df-mgp 20029 df-rng 20047 df-rnghm 20327 |
This theorem is referenced by: rnghmsubcsetclem2 46963 rngccatidALTV 46976 |
Copyright terms: Public domain | W3C validator |