Proof of Theorem rnghmf1o
| Step | Hyp | Ref
| Expression |
| 1 | | rnghmrcl 20398 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) |
| 2 | 1 | ancomd 461 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng)) |
| 3 | 2 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng)) |
| 4 | | simpr 484 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:𝐵–1-1-onto→𝐶) |
| 5 | | rnghmghm 20407 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 7 | | rnghmf1o.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 8 | | rnghmf1o.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) |
| 9 | 7, 8 | ghmf1o 19231 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
| 10 | 9 | bicomd 223 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| 11 | 6, 10 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| 12 | 4, 11 | mpbird 257 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 GrpHom 𝑅)) |
| 13 | | eqidd 2736 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 = 𝐹) |
| 14 | | eqid 2735 |
. . . . . . . . 9
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 15 | 14, 7 | mgpbas 20105 |
. . . . . . . 8
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
| 16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 17 | | eqid 2735 |
. . . . . . . . 9
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
| 18 | 17, 8 | mgpbas 20105 |
. . . . . . . 8
⊢ 𝐶 =
(Base‘(mulGrp‘𝑆)) |
| 19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆))) |
| 20 | 13, 16, 19 | f1oeq123d 6812 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
| 21 | 20 | biimpa 476 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))) |
| 22 | 14, 17 | rnghmmgmhm 20403 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆))) |
| 23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆))) |
| 24 | | eqid 2735 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
| 25 | | eqid 2735 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆)) |
| 26 | 24, 25 | mgmhmf1o 18678 |
. . . . . . 7
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))) |
| 27 | 26 | bicomd 223 |
. . . . . 6
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
| 28 | 23, 27 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
| 29 | 21, 28 | mpbird 257 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))) |
| 30 | 12, 29 | jca 511 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))) |
| 31 | 17, 14 | isrnghmmul 20402 |
. . 3
⊢ (◡𝐹 ∈ (𝑆 RngHom 𝑅) ↔ ((𝑆 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))) |
| 32 | 3, 30, 31 | sylanbrc 583 |
. 2
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 RngHom 𝑅)) |
| 33 | 7, 8 | rnghmf 20408 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵⟶𝐶) |
| 34 | 33 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐵⟶𝐶) |
| 35 | 34 | ffnd 6707 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹 Fn 𝐵) |
| 36 | 8, 7 | rnghmf 20408 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑆 RngHom 𝑅) → ◡𝐹:𝐶⟶𝐵) |
| 37 | 36 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)) → ◡𝐹:𝐶⟶𝐵) |
| 38 | 37 | ffnd 6707 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)) → ◡𝐹 Fn 𝐶) |
| 39 | | dff1o4 6826 |
. . 3
⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn 𝐶)) |
| 40 | 35, 38, 39 | sylanbrc 583 |
. 2
⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐵–1-1-onto→𝐶) |
| 41 | 32, 40 | impbida 800 |
1
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHom 𝑅))) |