Proof of Theorem rnghmf1o
Step | Hyp | Ref
| Expression |
1 | | rnghmrcl 45335 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) |
2 | 1 | ancomd 461 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng)) |
3 | 2 | adantr 480 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng)) |
4 | | simpr 484 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:𝐵–1-1-onto→𝐶) |
5 | | rnghmghm 45344 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
7 | | rnghmf1o.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
8 | | rnghmf1o.c |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑆) |
9 | 7, 8 | ghmf1o 18779 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) |
10 | 9 | bicomd 222 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
11 | 6, 10 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
12 | 4, 11 | mpbird 256 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 GrpHom 𝑅)) |
13 | | eqidd 2739 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 = 𝐹) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
15 | 14, 7 | mgpbas 19641 |
. . . . . . . 8
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅))) |
17 | | eqid 2738 |
. . . . . . . . 9
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
18 | 17, 8 | mgpbas 19641 |
. . . . . . . 8
⊢ 𝐶 =
(Base‘(mulGrp‘𝑆)) |
19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆))) |
20 | 13, 16, 19 | f1oeq123d 6694 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
21 | 20 | biimpa 476 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))) |
22 | 14, 17 | rnghmmgmhm 45340 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆))) |
23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆))) |
24 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
25 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆)) |
26 | 24, 25 | mgmhmf1o 45229 |
. . . . . . 7
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))) |
27 | 26 | bicomd 222 |
. . . . . 6
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
28 | 23, 27 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))) |
29 | 21, 28 | mpbird 256 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))) |
30 | 12, 29 | jca 511 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))) |
31 | 17, 14 | isrnghmmul 45339 |
. . 3
⊢ (◡𝐹 ∈ (𝑆 RngHomo 𝑅) ↔ ((𝑆 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (◡𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ ◡𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))) |
32 | 3, 30, 31 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶) → ◡𝐹 ∈ (𝑆 RngHomo 𝑅)) |
33 | 7, 8 | rnghmf 45345 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵⟶𝐶) |
34 | 33 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐵⟶𝐶) |
35 | 34 | ffnd 6585 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹 Fn 𝐵) |
36 | 8, 7 | rnghmf 45345 |
. . . . 5
⊢ (◡𝐹 ∈ (𝑆 RngHomo 𝑅) → ◡𝐹:𝐶⟶𝐵) |
37 | 36 | adantl 481 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)) → ◡𝐹:𝐶⟶𝐵) |
38 | 37 | ffnd 6585 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)) → ◡𝐹 Fn 𝐶) |
39 | | dff1o4 6708 |
. . 3
⊢ (𝐹:𝐵–1-1-onto→𝐶 ↔ (𝐹 Fn 𝐵 ∧ ◡𝐹 Fn 𝐶)) |
40 | 35, 38, 39 | sylanbrc 582 |
. 2
⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ ◡𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐵–1-1-onto→𝐶) |
41 | 32, 40 | impbida 797 |
1
⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RngHomo 𝑅))) |