Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmf1o Structured version   Visualization version   GIF version

Theorem rnghmf1o 44369
Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rnghmf1o.b 𝐵 = (Base‘𝑅)
rnghmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rnghmf1o (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHomo 𝑅)))

Proof of Theorem rnghmf1o
StepHypRef Expression
1 rnghmrcl 44355 . . . . 5 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
21ancomd 465 . . . 4 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
32adantr 484 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
4 simpr 488 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
5 rnghmghm 44364 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
65adantr 484 . . . . . 6 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
7 rnghmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
8 rnghmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
97, 8ghmf1o 18377 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
109bicomd 226 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
116, 10syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
124, 11mpbird 260 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
13 eqidd 2825 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 = 𝐹)
14 eqid 2824 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514, 7mgpbas 19234 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
1615a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
17 eqid 2824 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1817, 8mgpbas 19234 . . . . . . . 8 𝐶 = (Base‘(mulGrp‘𝑆))
1918a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2013, 16, 19f1oeq123d 6591 . . . . . 6 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2120biimpa 480 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2214, 17rnghmmgmhm 44360 . . . . . . 7 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
2322adantr 484 . . . . . 6 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
24 eqid 2824 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
25 eqid 2824 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2624, 25mgmhmf1o 44249 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
2726bicomd 226 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2823, 27syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2921, 28mpbird 260 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))
3012, 29jca 515 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
3117, 14isrnghmmul 44359 . . 3 (𝐹 ∈ (𝑆 RngHomo 𝑅) ↔ ((𝑆 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))))
323, 30, 31sylanbrc 586 . 2 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RngHomo 𝑅))
337, 8rnghmf 44365 . . . . 5 (𝐹 ∈ (𝑅 RngHomo 𝑆) → 𝐹:𝐵𝐶)
3433adantr 484 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐵𝐶)
3534ffnd 6496 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹 Fn 𝐵)
368, 7rnghmf 44365 . . . . 5 (𝐹 ∈ (𝑆 RngHomo 𝑅) → 𝐹:𝐶𝐵)
3736adantl 485 . . . 4 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐶𝐵)
3837ffnd 6496 . . 3 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹 Fn 𝐶)
39 dff1o4 6604 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4035, 38, 39sylanbrc 586 . 2 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐹 ∈ (𝑆 RngHomo 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4132, 40impbida 800 1 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHomo 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  ccnv 5535   Fn wfn 6331  wf 6332  1-1-ontowf1o 6335  cfv 6336  (class class class)co 7138  Basecbs 16472   GrpHom cghm 18344  mulGrpcmgp 19228   MgmHom cmgmhm 44239  Rngcrng 44340   RngHomo crngh 44351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-plusg 16567  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-grp 18095  df-ghm 18345  df-abl 18898  df-mgp 19229  df-mgmhm 44241  df-rng0 44341  df-rnghomo 44353
This theorem is referenced by:  isrngim  44370
  Copyright terms: Public domain W3C validator