MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmf1o Structured version   Visualization version   GIF version

Theorem rnghmf1o 20356
Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rnghmf1o.b 𝐵 = (Base‘𝑅)
rnghmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rnghmf1o (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHom 𝑅)))

Proof of Theorem rnghmf1o
StepHypRef Expression
1 rnghmrcl 20342 . . . . 5 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
21ancomd 461 . . . 4 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
32adantr 480 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
4 simpr 484 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
5 rnghmghm 20351 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
65adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
7 rnghmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
8 rnghmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
97, 8ghmf1o 19146 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
109bicomd 223 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
116, 10syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
124, 11mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
13 eqidd 2730 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 = 𝐹)
14 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514, 7mgpbas 20049 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
1615a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
17 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1817, 8mgpbas 20049 . . . . . . . 8 𝐶 = (Base‘(mulGrp‘𝑆))
1918a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2013, 16, 19f1oeq123d 6762 . . . . . 6 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2120biimpa 476 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2214, 17rnghmmgmhm 20347 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
2322adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
24 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
25 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2624, 25mgmhmf1o 18593 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
2726bicomd 223 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2823, 27syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2921, 28mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))
3012, 29jca 511 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
3117, 14isrnghmmul 20346 . . 3 (𝐹 ∈ (𝑆 RngHom 𝑅) ↔ ((𝑆 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))))
323, 30, 31sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RngHom 𝑅))
337, 8rnghmf 20352 . . . . 5 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵𝐶)
3433adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐵𝐶)
3534ffnd 6657 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹 Fn 𝐵)
368, 7rnghmf 20352 . . . . 5 (𝐹 ∈ (𝑆 RngHom 𝑅) → 𝐹:𝐶𝐵)
3736adantl 481 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐶𝐵)
3837ffnd 6657 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹 Fn 𝐶)
39 dff1o4 6776 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4035, 38, 39sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4132, 40impbida 800 1 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ccnv 5622   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17139   MgmHom cmgmhm 18583   GrpHom cghm 19110  mulGrpcmgp 20044  Rngcrng 20056   RngHom crnghm 20338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-plusg 17193  df-mgm 18533  df-mgmhm 18585  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-ghm 19111  df-abl 19681  df-mgp 20045  df-rng 20057  df-rnghm 20340
This theorem is referenced by:  isrngim2  20357
  Copyright terms: Public domain W3C validator