MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmf1o Structured version   Visualization version   GIF version

Theorem rnghmf1o 20361
Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020.)
Hypotheses
Ref Expression
rnghmf1o.b 𝐵 = (Base‘𝑅)
rnghmf1o.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
rnghmf1o (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHom 𝑅)))

Proof of Theorem rnghmf1o
StepHypRef Expression
1 rnghmrcl 20347 . . . . 5 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
21ancomd 461 . . . 4 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
32adantr 480 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
4 simpr 484 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:𝐵1-1-onto𝐶)
5 rnghmghm 20356 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
65adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
7 rnghmf1o.b . . . . . . . 8 𝐵 = (Base‘𝑅)
8 rnghmf1o.c . . . . . . . 8 𝐶 = (Base‘𝑆)
97, 8ghmf1o 19180 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 GrpHom 𝑅)))
109bicomd 223 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
116, 10syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ↔ 𝐹:𝐵1-1-onto𝐶))
124, 11mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 GrpHom 𝑅))
13 eqidd 2730 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 = 𝐹)
14 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514, 7mgpbas 20054 . . . . . . . 8 𝐵 = (Base‘(mulGrp‘𝑅))
1615a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐵 = (Base‘(mulGrp‘𝑅)))
17 eqid 2729 . . . . . . . . 9 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1817, 8mgpbas 20054 . . . . . . . 8 𝐶 = (Base‘(mulGrp‘𝑆))
1918a1i 11 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐶 = (Base‘(mulGrp‘𝑆)))
2013, 16, 19f1oeq123d 6794 . . . . . 6 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2120biimpa 476 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)))
2214, 17rnghmmgmhm 20352 . . . . . . 7 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
2322adantr 480 . . . . . 6 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)))
24 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
25 eqid 2729 . . . . . . . 8 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
2624, 25mgmhmf1o 18627 . . . . . . 7 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆)) ↔ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
2726bicomd 223 . . . . . 6 (𝐹 ∈ ((mulGrp‘𝑅) MgmHom (mulGrp‘𝑆)) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2823, 27syl 17 . . . . 5 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)) ↔ 𝐹:(Base‘(mulGrp‘𝑅))–1-1-onto→(Base‘(mulGrp‘𝑆))))
2921, 28mpbird 257 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))
3012, 29jca 511 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅))))
3117, 14isrnghmmul 20351 . . 3 (𝐹 ∈ (𝑆 RngHom 𝑅) ↔ ((𝑆 ∈ Rng ∧ 𝑅 ∈ Rng) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑅) ∧ 𝐹 ∈ ((mulGrp‘𝑆) MgmHom (mulGrp‘𝑅)))))
323, 30, 31sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶) → 𝐹 ∈ (𝑆 RngHom 𝑅))
337, 8rnghmf 20357 . . . . 5 (𝐹 ∈ (𝑅 RngHom 𝑆) → 𝐹:𝐵𝐶)
3433adantr 480 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐵𝐶)
3534ffnd 6689 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹 Fn 𝐵)
368, 7rnghmf 20357 . . . . 5 (𝐹 ∈ (𝑆 RngHom 𝑅) → 𝐹:𝐶𝐵)
3736adantl 481 . . . 4 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐶𝐵)
3837ffnd 6689 . . 3 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹 Fn 𝐶)
39 dff1o4 6808 . . 3 (𝐹:𝐵1-1-onto𝐶 ↔ (𝐹 Fn 𝐵𝐹 Fn 𝐶))
4035, 38, 39sylanbrc 583 . 2 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹 ∈ (𝑆 RngHom 𝑅)) → 𝐹:𝐵1-1-onto𝐶)
4132, 40impbida 800 1 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 RngHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ccnv 5637   Fn wfn 6506  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Basecbs 17179   MgmHom cmgmhm 18617   GrpHom cghm 19144  mulGrpcmgp 20049  Rngcrng 20061   RngHom crnghm 20343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mgm 18567  df-mgmhm 18619  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-ghm 19145  df-abl 19713  df-mgp 20050  df-rng 20062  df-rnghm 20345
This theorem is referenced by:  isrngim2  20362
  Copyright terms: Public domain W3C validator