| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6182 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | elex 3457 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | rabid2 3428 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 7 | 2, 6 | eqtr4id 2785 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ↦ cmpt 5167 dom cdm 5611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: rnmpt0f 6185 ovmpt3rabdm 7600 suppssov1 8122 suppssov2 8123 suppssfv 8127 iinon 8255 onoviun 8258 noinfep 9545 cantnfdm 9549 axcc2lem 10322 negfi 12066 ccatalpha 14496 swrd0 14561 o1lo1 15439 o1lo12 15440 lo1mptrcl 15524 o1mptrcl 15525 o1add2 15526 o1mul2 15527 o1sub2 15528 lo1add 15529 lo1mul 15530 o1dif 15532 rlimneg 15549 lo1le 15554 rlimno1 15556 o1fsum 15715 divsfval 17446 subdrgint 20713 iscnp2 23149 ptcnplem 23531 xkoinjcn 23597 fbasrn 23794 prdsdsf 24277 ressprdsds 24281 mbfmptcl 25559 mbfdm2 25560 dvmptresicc 25839 dvmptcl 25885 dvmptadd 25886 dvmptmul 25887 dvmptres2 25888 dvmptcmul 25890 dvmptcj 25894 dvmptco 25898 rolle 25916 dvlip 25920 dvlipcn 25921 dvle 25934 dvivthlem1 25935 dvivth 25937 dvfsumle 25948 dvfsumleOLD 25949 dvfsumge 25950 dvmptrecl 25952 dvfsumlem2 25955 dvfsumlem2OLD 25956 pserdv 26361 logtayl 26591 relogbf 26723 rlimcxp 26906 o1cxp 26907 gsummpt2co 33020 psgnfzto1stlem 33061 measdivcstALTV 34230 probfinmeasbALTV 34434 probmeasb 34435 dstrvprob 34477 cvmsss2 35310 sdclem2 37782 3factsumint1 42054 dmmzp 42766 dvcosax 45964 dvnprodlem3 45986 itgcoscmulx 46007 stoweidlem27 46065 dirkeritg 46140 fourierdlem16 46161 fourierdlem21 46166 fourierdlem22 46167 fourierdlem39 46184 fourierdlem57 46201 fourierdlem58 46202 fourierdlem60 46204 fourierdlem61 46205 fourierdlem73 46217 fourierdlem83 46227 subsaliuncllem 46395 0ome 46567 hoi2toco 46645 elbigofrcl 48582 itcoval0mpt 48698 |
| Copyright terms: Public domain | W3C validator |