![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6239 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | elex 3492 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | 3 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | rabid2 3464 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 4, 5 | sylibr 233 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | 2, 6 | eqtr4id 2791 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3061 {crab 3432 Vcvv 3474 ↦ cmpt 5231 dom cdm 5676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 |
This theorem is referenced by: rnmpt0f 6242 ovmpt3rabdm 7667 suppssov1 8185 suppssfv 8189 iinon 8342 onoviun 8345 noinfep 9657 cantnfdm 9661 axcc2lem 10433 negfi 12167 ccatalpha 14547 swrd0 14612 o1lo1 15485 o1lo12 15486 lo1mptrcl 15570 o1mptrcl 15571 o1add2 15572 o1mul2 15573 o1sub2 15574 lo1add 15575 lo1mul 15576 o1dif 15578 rlimneg 15597 lo1le 15602 rlimno1 15604 o1fsum 15763 divsfval 17497 subdrgint 20562 iscnp2 22963 ptcnplem 23345 xkoinjcn 23411 fbasrn 23608 prdsdsf 24093 ressprdsds 24097 mbfmptcl 25377 mbfdm2 25378 dvmptresicc 25657 dvmptcl 25700 dvmptadd 25701 dvmptmul 25702 dvmptres2 25703 dvmptcmul 25705 dvmptcj 25709 dvmptco 25713 rolle 25731 dvlip 25734 dvlipcn 25735 dvle 25748 dvivthlem1 25749 dvivth 25751 dvfsumle 25762 dvfsumge 25763 dvmptrecl 25765 dvfsumlem2 25768 pserdv 26165 logtayl 26392 relogbf 26520 rlimcxp 26702 o1cxp 26703 gsummpt2co 32458 psgnfzto1stlem 32517 measdivcstALTV 33509 probfinmeasbALTV 33714 probmeasb 33715 dstrvprob 33756 cvmsss2 34551 gg-dvfsumle 35468 gg-dvfsumlem2 35469 sdclem2 36913 3factsumint1 41192 dmmzp 41773 dvcosax 44941 dvnprodlem3 44963 itgcoscmulx 44984 stoweidlem27 45042 dirkeritg 45117 fourierdlem16 45138 fourierdlem21 45143 fourierdlem22 45144 fourierdlem39 45161 fourierdlem57 45178 fourierdlem58 45179 fourierdlem60 45181 fourierdlem61 45182 fourierdlem73 45194 fourierdlem83 45204 subsaliuncllem 45372 0ome 45544 hoi2toco 45622 elbigofrcl 47324 itcoval0mpt 47440 |
Copyright terms: Public domain | W3C validator |