Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6142 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | elex 3449 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | 3 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | rabid2 3313 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 4, 5 | sylibr 233 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | 2, 6 | eqtr4id 2799 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 ∀wral 3066 {crab 3070 Vcvv 3431 ↦ cmpt 5162 dom cdm 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-mpt 5163 df-xp 5596 df-rel 5597 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 |
This theorem is referenced by: rnmpt0f 6145 ovmpt3rabdm 7522 suppssov1 8005 suppssfv 8009 iinon 8162 onoviun 8165 noinfep 9396 cantnfdm 9400 axcc2lem 10193 negfi 11924 ccatalpha 14296 swrd0 14369 o1lo1 15244 o1lo12 15245 lo1mptrcl 15329 o1mptrcl 15330 o1add2 15331 o1mul2 15332 o1sub2 15333 lo1add 15334 lo1mul 15335 o1dif 15337 rlimneg 15356 lo1le 15361 rlimno1 15363 o1fsum 15523 divsfval 17256 subdrgint 20069 iscnp2 22388 ptcnplem 22770 xkoinjcn 22836 fbasrn 23033 prdsdsf 23518 ressprdsds 23522 mbfmptcl 24798 mbfdm2 24799 dvmptresicc 25078 dvmptcl 25121 dvmptadd 25122 dvmptmul 25123 dvmptres2 25124 dvmptcmul 25126 dvmptcj 25130 dvmptco 25134 rolle 25152 dvlip 25155 dvlipcn 25156 dvle 25169 dvivthlem1 25170 dvivth 25172 dvfsumle 25183 dvfsumge 25184 dvmptrecl 25186 dvfsumlem2 25189 pserdv 25586 logtayl 25813 relogbf 25939 rlimcxp 26121 o1cxp 26122 gsummpt2co 31304 psgnfzto1stlem 31363 measdivcstALTV 32189 probfinmeasbALTV 32392 probmeasb 32393 dstrvprob 32434 cvmsss2 33232 sdclem2 35896 3factsumint1 40026 dmmzp 40552 dvcosax 43438 dvnprodlem3 43460 itgcoscmulx 43481 stoweidlem27 43539 dirkeritg 43614 fourierdlem16 43635 fourierdlem21 43640 fourierdlem22 43641 fourierdlem39 43658 fourierdlem57 43675 fourierdlem58 43676 fourierdlem60 43678 fourierdlem61 43679 fourierdlem73 43691 fourierdlem83 43701 subsaliuncllem 43867 0ome 44038 hoi2toco 44116 elbigofrcl 45865 itcoval0mpt 45981 |
Copyright terms: Public domain | W3C validator |