![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6271 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | elex 3509 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | 3 | ralimi 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | rabid2 3478 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | 2, 6 | eqtr4id 2799 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 {crab 3443 Vcvv 3488 ↦ cmpt 5249 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: rnmpt0f 6274 ovmpt3rabdm 7709 suppssov1 8238 suppssov2 8239 suppssfv 8243 iinon 8396 onoviun 8399 noinfep 9729 cantnfdm 9733 axcc2lem 10505 negfi 12244 ccatalpha 14641 swrd0 14706 o1lo1 15583 o1lo12 15584 lo1mptrcl 15668 o1mptrcl 15669 o1add2 15670 o1mul2 15671 o1sub2 15672 lo1add 15673 lo1mul 15674 o1dif 15676 rlimneg 15695 lo1le 15700 rlimno1 15702 o1fsum 15861 divsfval 17607 subdrgint 20826 iscnp2 23268 ptcnplem 23650 xkoinjcn 23716 fbasrn 23913 prdsdsf 24398 ressprdsds 24402 mbfmptcl 25690 mbfdm2 25691 dvmptresicc 25971 dvmptcl 26017 dvmptadd 26018 dvmptmul 26019 dvmptres2 26020 dvmptcmul 26022 dvmptcj 26026 dvmptco 26030 rolle 26048 dvlip 26052 dvlipcn 26053 dvle 26066 dvivthlem1 26067 dvivth 26069 dvfsumle 26080 dvfsumleOLD 26081 dvfsumge 26082 dvmptrecl 26084 dvfsumlem2 26087 dvfsumlem2OLD 26088 pserdv 26491 logtayl 26720 relogbf 26852 rlimcxp 27035 o1cxp 27036 gsummpt2co 33031 psgnfzto1stlem 33093 measdivcstALTV 34189 probfinmeasbALTV 34394 probmeasb 34395 dstrvprob 34436 cvmsss2 35242 sdclem2 37702 3factsumint1 41978 dmmzp 42689 dvcosax 45847 dvnprodlem3 45869 itgcoscmulx 45890 stoweidlem27 45948 dirkeritg 46023 fourierdlem16 46044 fourierdlem21 46049 fourierdlem22 46050 fourierdlem39 46067 fourierdlem57 46084 fourierdlem58 46085 fourierdlem60 46087 fourierdlem61 46088 fourierdlem73 46100 fourierdlem83 46110 subsaliuncllem 46278 0ome 46450 hoi2toco 46528 elbigofrcl 48284 itcoval0mpt 48400 |
Copyright terms: Public domain | W3C validator |