|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6259 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} | 
| 3 | elex 3500 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | 
| 5 | rabid2 3469 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) | 
| 7 | 2, 6 | eqtr4id 2795 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 Vcvv 3479 ↦ cmpt 5224 dom cdm 5684 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-mpt 5225 df-xp 5690 df-rel 5691 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 | 
| This theorem is referenced by: rnmpt0f 6262 ovmpt3rabdm 7693 suppssov1 8223 suppssov2 8224 suppssfv 8228 iinon 8381 onoviun 8384 noinfep 9701 cantnfdm 9705 axcc2lem 10477 negfi 12218 ccatalpha 14632 swrd0 14697 o1lo1 15574 o1lo12 15575 lo1mptrcl 15659 o1mptrcl 15660 o1add2 15661 o1mul2 15662 o1sub2 15663 lo1add 15664 lo1mul 15665 o1dif 15667 rlimneg 15684 lo1le 15689 rlimno1 15691 o1fsum 15850 divsfval 17593 subdrgint 20805 iscnp2 23248 ptcnplem 23630 xkoinjcn 23696 fbasrn 23893 prdsdsf 24378 ressprdsds 24382 mbfmptcl 25672 mbfdm2 25673 dvmptresicc 25952 dvmptcl 25998 dvmptadd 25999 dvmptmul 26000 dvmptres2 26001 dvmptcmul 26003 dvmptcj 26007 dvmptco 26011 rolle 26029 dvlip 26033 dvlipcn 26034 dvle 26047 dvivthlem1 26048 dvivth 26050 dvfsumle 26061 dvfsumleOLD 26062 dvfsumge 26063 dvmptrecl 26065 dvfsumlem2 26068 dvfsumlem2OLD 26069 pserdv 26474 logtayl 26703 relogbf 26835 rlimcxp 27018 o1cxp 27019 gsummpt2co 33052 psgnfzto1stlem 33121 measdivcstALTV 34227 probfinmeasbALTV 34432 probmeasb 34433 dstrvprob 34475 cvmsss2 35280 sdclem2 37750 3factsumint1 42023 dmmzp 42749 dvcosax 45946 dvnprodlem3 45968 itgcoscmulx 45989 stoweidlem27 46047 dirkeritg 46122 fourierdlem16 46143 fourierdlem21 46148 fourierdlem22 46149 fourierdlem39 46166 fourierdlem57 46183 fourierdlem58 46184 fourierdlem60 46186 fourierdlem61 46187 fourierdlem73 46199 fourierdlem83 46209 subsaliuncllem 46377 0ome 46549 hoi2toco 46627 elbigofrcl 48476 itcoval0mpt 48592 | 
| Copyright terms: Public domain | W3C validator |