Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6158 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | elex 3455 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | 3 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | rabid2 3326 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 4, 5 | sylibr 233 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | 2, 6 | eqtr4id 2795 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∀wral 3062 {crab 3284 Vcvv 3437 ↦ cmpt 5164 dom cdm 5600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 |
This theorem is referenced by: rnmpt0f 6161 ovmpt3rabdm 7560 suppssov1 8045 suppssfv 8049 iinon 8202 onoviun 8205 noinfep 9462 cantnfdm 9466 axcc2lem 10238 negfi 11970 ccatalpha 14343 swrd0 14416 o1lo1 15291 o1lo12 15292 lo1mptrcl 15376 o1mptrcl 15377 o1add2 15378 o1mul2 15379 o1sub2 15380 lo1add 15381 lo1mul 15382 o1dif 15384 rlimneg 15403 lo1le 15408 rlimno1 15410 o1fsum 15570 divsfval 17303 subdrgint 20116 iscnp2 22435 ptcnplem 22817 xkoinjcn 22883 fbasrn 23080 prdsdsf 23565 ressprdsds 23569 mbfmptcl 24845 mbfdm2 24846 dvmptresicc 25125 dvmptcl 25168 dvmptadd 25169 dvmptmul 25170 dvmptres2 25171 dvmptcmul 25173 dvmptcj 25177 dvmptco 25181 rolle 25199 dvlip 25202 dvlipcn 25203 dvle 25216 dvivthlem1 25217 dvivth 25219 dvfsumle 25230 dvfsumge 25231 dvmptrecl 25233 dvfsumlem2 25236 pserdv 25633 logtayl 25860 relogbf 25986 rlimcxp 26168 o1cxp 26169 gsummpt2co 31353 psgnfzto1stlem 31412 measdivcstALTV 32238 probfinmeasbALTV 32441 probmeasb 32442 dstrvprob 32483 cvmsss2 33281 sdclem2 35944 3factsumint1 40071 dmmzp 40592 dvcosax 43516 dvnprodlem3 43538 itgcoscmulx 43559 stoweidlem27 43617 dirkeritg 43692 fourierdlem16 43713 fourierdlem21 43718 fourierdlem22 43719 fourierdlem39 43736 fourierdlem57 43753 fourierdlem58 43754 fourierdlem60 43756 fourierdlem61 43757 fourierdlem73 43769 fourierdlem83 43779 subsaliuncllem 43945 0ome 44117 hoi2toco 44195 elbigofrcl 45954 itcoval0mpt 46070 |
Copyright terms: Public domain | W3C validator |