| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6213 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | elex 3468 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | rabid2 3439 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 7 | 2, 6 | eqtr4id 2783 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ↦ cmpt 5188 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: rnmpt0f 6216 ovmpt3rabdm 7648 suppssov1 8176 suppssov2 8177 suppssfv 8181 iinon 8309 onoviun 8312 noinfep 9613 cantnfdm 9617 axcc2lem 10389 negfi 12132 ccatalpha 14558 swrd0 14623 o1lo1 15503 o1lo12 15504 lo1mptrcl 15588 o1mptrcl 15589 o1add2 15590 o1mul2 15591 o1sub2 15592 lo1add 15593 lo1mul 15594 o1dif 15596 rlimneg 15613 lo1le 15618 rlimno1 15620 o1fsum 15779 divsfval 17510 subdrgint 20712 iscnp2 23126 ptcnplem 23508 xkoinjcn 23574 fbasrn 23771 prdsdsf 24255 ressprdsds 24259 mbfmptcl 25537 mbfdm2 25538 dvmptresicc 25817 dvmptcl 25863 dvmptadd 25864 dvmptmul 25865 dvmptres2 25866 dvmptcmul 25868 dvmptcj 25872 dvmptco 25876 rolle 25894 dvlip 25898 dvlipcn 25899 dvle 25912 dvivthlem1 25913 dvivth 25915 dvfsumle 25926 dvfsumleOLD 25927 dvfsumge 25928 dvmptrecl 25930 dvfsumlem2 25933 dvfsumlem2OLD 25934 pserdv 26339 logtayl 26569 relogbf 26701 rlimcxp 26884 o1cxp 26885 gsummpt2co 32988 psgnfzto1stlem 33057 measdivcstALTV 34215 probfinmeasbALTV 34420 probmeasb 34421 dstrvprob 34463 cvmsss2 35261 sdclem2 37736 3factsumint1 42009 dmmzp 42721 dvcosax 45924 dvnprodlem3 45946 itgcoscmulx 45967 stoweidlem27 46025 dirkeritg 46100 fourierdlem16 46121 fourierdlem21 46126 fourierdlem22 46127 fourierdlem39 46144 fourierdlem57 46161 fourierdlem58 46162 fourierdlem60 46164 fourierdlem61 46165 fourierdlem73 46177 fourierdlem83 46187 subsaliuncllem 46355 0ome 46527 hoi2toco 46605 elbigofrcl 48536 itcoval0mpt 48652 |
| Copyright terms: Public domain | W3C validator |