![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6262 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | elex 3499 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | 3 | ralimi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | rabid2 3468 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | 2, 6 | eqtr4id 2794 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {crab 3433 Vcvv 3478 ↦ cmpt 5231 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-mpt 5232 df-xp 5695 df-rel 5696 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 |
This theorem is referenced by: rnmpt0f 6265 ovmpt3rabdm 7692 suppssov1 8221 suppssov2 8222 suppssfv 8226 iinon 8379 onoviun 8382 noinfep 9698 cantnfdm 9702 axcc2lem 10474 negfi 12215 ccatalpha 14628 swrd0 14693 o1lo1 15570 o1lo12 15571 lo1mptrcl 15655 o1mptrcl 15656 o1add2 15657 o1mul2 15658 o1sub2 15659 lo1add 15660 lo1mul 15661 o1dif 15663 rlimneg 15680 lo1le 15685 rlimno1 15687 o1fsum 15846 divsfval 17594 subdrgint 20821 iscnp2 23263 ptcnplem 23645 xkoinjcn 23711 fbasrn 23908 prdsdsf 24393 ressprdsds 24397 mbfmptcl 25685 mbfdm2 25686 dvmptresicc 25966 dvmptcl 26012 dvmptadd 26013 dvmptmul 26014 dvmptres2 26015 dvmptcmul 26017 dvmptcj 26021 dvmptco 26025 rolle 26043 dvlip 26047 dvlipcn 26048 dvle 26061 dvivthlem1 26062 dvivth 26064 dvfsumle 26075 dvfsumleOLD 26076 dvfsumge 26077 dvmptrecl 26079 dvfsumlem2 26082 dvfsumlem2OLD 26083 pserdv 26488 logtayl 26717 relogbf 26849 rlimcxp 27032 o1cxp 27033 gsummpt2co 33034 psgnfzto1stlem 33103 measdivcstALTV 34206 probfinmeasbALTV 34411 probmeasb 34412 dstrvprob 34453 cvmsss2 35259 sdclem2 37729 3factsumint1 42003 dmmzp 42721 dvcosax 45882 dvnprodlem3 45904 itgcoscmulx 45925 stoweidlem27 45983 dirkeritg 46058 fourierdlem16 46079 fourierdlem21 46084 fourierdlem22 46085 fourierdlem39 46102 fourierdlem57 46119 fourierdlem58 46120 fourierdlem60 46122 fourierdlem61 46123 fourierdlem73 46135 fourierdlem83 46145 subsaliuncllem 46313 0ome 46485 hoi2toco 46563 elbigofrcl 48400 itcoval0mpt 48516 |
Copyright terms: Public domain | W3C validator |