| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6189 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | elex 3457 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | rabid2 3428 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 7 | 2, 6 | eqtr4id 2783 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3394 Vcvv 3436 ↦ cmpt 5173 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: rnmpt0f 6192 ovmpt3rabdm 7608 suppssov1 8130 suppssov2 8131 suppssfv 8135 iinon 8263 onoviun 8266 noinfep 9556 cantnfdm 9560 axcc2lem 10330 negfi 12074 ccatalpha 14500 swrd0 14565 o1lo1 15444 o1lo12 15445 lo1mptrcl 15529 o1mptrcl 15530 o1add2 15531 o1mul2 15532 o1sub2 15533 lo1add 15534 lo1mul 15535 o1dif 15537 rlimneg 15554 lo1le 15559 rlimno1 15561 o1fsum 15720 divsfval 17451 subdrgint 20688 iscnp2 23124 ptcnplem 23506 xkoinjcn 23572 fbasrn 23769 prdsdsf 24253 ressprdsds 24257 mbfmptcl 25535 mbfdm2 25536 dvmptresicc 25815 dvmptcl 25861 dvmptadd 25862 dvmptmul 25863 dvmptres2 25864 dvmptcmul 25866 dvmptcj 25870 dvmptco 25874 rolle 25892 dvlip 25896 dvlipcn 25897 dvle 25910 dvivthlem1 25911 dvivth 25913 dvfsumle 25924 dvfsumleOLD 25925 dvfsumge 25926 dvmptrecl 25928 dvfsumlem2 25931 dvfsumlem2OLD 25932 pserdv 26337 logtayl 26567 relogbf 26699 rlimcxp 26882 o1cxp 26883 gsummpt2co 33001 psgnfzto1stlem 33042 measdivcstALTV 34192 probfinmeasbALTV 34397 probmeasb 34398 dstrvprob 34440 cvmsss2 35247 sdclem2 37722 3factsumint1 41994 dmmzp 42706 dvcosax 45907 dvnprodlem3 45929 itgcoscmulx 45950 stoweidlem27 46008 dirkeritg 46083 fourierdlem16 46104 fourierdlem21 46109 fourierdlem22 46110 fourierdlem39 46127 fourierdlem57 46144 fourierdlem58 46145 fourierdlem60 46147 fourierdlem61 46148 fourierdlem73 46160 fourierdlem83 46170 subsaliuncllem 46338 0ome 46510 hoi2toco 46588 elbigofrcl 48535 itcoval0mpt 48651 |
| Copyright terms: Public domain | W3C validator |