| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6201 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | elex 3465 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | rabid2 3436 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 7 | 2, 6 | eqtr4id 2783 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3402 Vcvv 3444 ↦ cmpt 5183 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-mpt 5184 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: rnmpt0f 6204 ovmpt3rabdm 7628 suppssov1 8153 suppssov2 8154 suppssfv 8158 iinon 8286 onoviun 8289 noinfep 9589 cantnfdm 9593 axcc2lem 10365 negfi 12108 ccatalpha 14534 swrd0 14599 o1lo1 15479 o1lo12 15480 lo1mptrcl 15564 o1mptrcl 15565 o1add2 15566 o1mul2 15567 o1sub2 15568 lo1add 15569 lo1mul 15570 o1dif 15572 rlimneg 15589 lo1le 15594 rlimno1 15596 o1fsum 15755 divsfval 17486 subdrgint 20688 iscnp2 23102 ptcnplem 23484 xkoinjcn 23550 fbasrn 23747 prdsdsf 24231 ressprdsds 24235 mbfmptcl 25513 mbfdm2 25514 dvmptresicc 25793 dvmptcl 25839 dvmptadd 25840 dvmptmul 25841 dvmptres2 25842 dvmptcmul 25844 dvmptcj 25848 dvmptco 25852 rolle 25870 dvlip 25874 dvlipcn 25875 dvle 25888 dvivthlem1 25889 dvivth 25891 dvfsumle 25902 dvfsumleOLD 25903 dvfsumge 25904 dvmptrecl 25906 dvfsumlem2 25909 dvfsumlem2OLD 25910 pserdv 26315 logtayl 26545 relogbf 26677 rlimcxp 26860 o1cxp 26861 gsummpt2co 32961 psgnfzto1stlem 33030 measdivcstALTV 34188 probfinmeasbALTV 34393 probmeasb 34394 dstrvprob 34436 cvmsss2 35234 sdclem2 37709 3factsumint1 41982 dmmzp 42694 dvcosax 45897 dvnprodlem3 45919 itgcoscmulx 45940 stoweidlem27 45998 dirkeritg 46073 fourierdlem16 46094 fourierdlem21 46099 fourierdlem22 46100 fourierdlem39 46117 fourierdlem57 46134 fourierdlem58 46135 fourierdlem60 46137 fourierdlem61 46138 fourierdlem73 46150 fourierdlem83 46160 subsaliuncllem 46328 0ome 46500 hoi2toco 46578 elbigofrcl 48512 itcoval0mpt 48628 |
| Copyright terms: Public domain | W3C validator |