Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version |
Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
Ref | Expression |
---|---|
dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | 1 | dmmpt 6140 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
3 | elex 3448 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | 3 | ralimi 3088 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
5 | rabid2 3312 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 4, 5 | sylibr 233 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
7 | 2, 6 | eqtr4id 2798 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 Vcvv 3430 ↦ cmpt 5161 dom cdm 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 |
This theorem is referenced by: rnmpt0f 6143 ovmpt3rabdm 7519 suppssov1 7998 suppssfv 8002 iinon 8155 onoviun 8158 noinfep 9379 cantnfdm 9383 axcc2lem 10176 negfi 11907 ccatalpha 14279 swrd0 14352 o1lo1 15227 o1lo12 15228 lo1mptrcl 15312 o1mptrcl 15313 o1add2 15314 o1mul2 15315 o1sub2 15316 lo1add 15317 lo1mul 15318 o1dif 15320 rlimneg 15339 lo1le 15344 rlimno1 15346 o1fsum 15506 divsfval 17239 subdrgint 20052 iscnp2 22371 ptcnplem 22753 xkoinjcn 22819 fbasrn 23016 prdsdsf 23501 ressprdsds 23505 mbfmptcl 24781 mbfdm2 24782 dvmptresicc 25061 dvmptcl 25104 dvmptadd 25105 dvmptmul 25106 dvmptres2 25107 dvmptcmul 25109 dvmptcj 25113 dvmptco 25117 rolle 25135 dvlip 25138 dvlipcn 25139 dvle 25152 dvivthlem1 25153 dvivth 25155 dvfsumle 25166 dvfsumge 25167 dvmptrecl 25169 dvfsumlem2 25172 pserdv 25569 logtayl 25796 relogbf 25922 rlimcxp 26104 o1cxp 26105 gsummpt2co 31287 psgnfzto1stlem 31346 measdivcstALTV 32172 probfinmeasbALTV 32375 probmeasb 32376 dstrvprob 32417 cvmsss2 33215 sdclem2 35879 3factsumint1 40009 dmmzp 40535 dvcosax 43421 dvnprodlem3 43443 itgcoscmulx 43464 stoweidlem27 43522 dirkeritg 43597 fourierdlem16 43618 fourierdlem21 43623 fourierdlem22 43624 fourierdlem39 43641 fourierdlem57 43658 fourierdlem58 43659 fourierdlem60 43661 fourierdlem61 43662 fourierdlem73 43674 fourierdlem83 43684 subsaliuncllem 43850 0ome 44021 hoi2toco 44099 elbigofrcl 45848 itcoval0mpt 45964 |
Copyright terms: Public domain | W3C validator |