| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmmptg | Structured version Visualization version GIF version | ||
| Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013.) (Revised by Mario Carneiro, 14-Sep-2013.) |
| Ref | Expression |
|---|---|
| dmmptg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | 1 | dmmpt 6234 | . 2 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 3 | elex 3485 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
| 4 | 3 | ralimi 3074 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 5 | rabid2 3454 | . . 3 ⊢ (𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 4, 5 | sylibr 234 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → 𝐴 = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V}) |
| 7 | 2, 6 | eqtr4id 2790 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 Vcvv 3464 ↦ cmpt 5206 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-mpt 5207 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 |
| This theorem is referenced by: rnmpt0f 6237 ovmpt3rabdm 7671 suppssov1 8201 suppssov2 8202 suppssfv 8206 iinon 8359 onoviun 8362 noinfep 9679 cantnfdm 9683 axcc2lem 10455 negfi 12196 ccatalpha 14616 swrd0 14681 o1lo1 15558 o1lo12 15559 lo1mptrcl 15643 o1mptrcl 15644 o1add2 15645 o1mul2 15646 o1sub2 15647 lo1add 15648 lo1mul 15649 o1dif 15651 rlimneg 15668 lo1le 15673 rlimno1 15675 o1fsum 15834 divsfval 17566 subdrgint 20768 iscnp2 23182 ptcnplem 23564 xkoinjcn 23630 fbasrn 23827 prdsdsf 24311 ressprdsds 24315 mbfmptcl 25594 mbfdm2 25595 dvmptresicc 25874 dvmptcl 25920 dvmptadd 25921 dvmptmul 25922 dvmptres2 25923 dvmptcmul 25925 dvmptcj 25929 dvmptco 25933 rolle 25951 dvlip 25955 dvlipcn 25956 dvle 25969 dvivthlem1 25970 dvivth 25972 dvfsumle 25983 dvfsumleOLD 25984 dvfsumge 25985 dvmptrecl 25987 dvfsumlem2 25990 dvfsumlem2OLD 25991 pserdv 26396 logtayl 26626 relogbf 26758 rlimcxp 26941 o1cxp 26942 gsummpt2co 33047 psgnfzto1stlem 33116 measdivcstALTV 34261 probfinmeasbALTV 34466 probmeasb 34467 dstrvprob 34509 cvmsss2 35301 sdclem2 37771 3factsumint1 42039 dmmzp 42723 dvcosax 45922 dvnprodlem3 45944 itgcoscmulx 45965 stoweidlem27 46023 dirkeritg 46098 fourierdlem16 46119 fourierdlem21 46124 fourierdlem22 46125 fourierdlem39 46142 fourierdlem57 46159 fourierdlem58 46160 fourierdlem60 46162 fourierdlem61 46163 fourierdlem73 46175 fourierdlem83 46185 subsaliuncllem 46353 0ome 46525 hoi2toco 46603 elbigofrcl 48497 itcoval0mpt 48613 |
| Copyright terms: Public domain | W3C validator |