MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptn0 Structured version   Visualization version   GIF version

Theorem rnmptn0 6186
Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0f.1 𝑥𝜑
rnmpt0f.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0f.3 𝐹 = (𝑥𝐴𝐵)
rnmptn0.a (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
rnmptn0 (𝜑 → ran 𝐹 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptn0
StepHypRef Expression
1 rnmptn0.a . . . 4 (𝜑𝐴 ≠ ∅)
21neneqd 2933 . . 3 (𝜑 → ¬ 𝐴 = ∅)
3 rnmpt0f.1 . . . 4 𝑥𝜑
4 rnmpt0f.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 rnmpt0f.3 . . . 4 𝐹 = (𝑥𝐴𝐵)
63, 4, 5rnmpt0f 6185 . . 3 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
72, 6mtbird 325 . 2 (𝜑 → ¬ ran 𝐹 = ∅)
87neqned 2935 1 (𝜑 → ran 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  c0 4278  cmpt 5167  ran crn 5612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-rel 5618  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624
This theorem is referenced by:  nsgqusf1olem1  33370  suprnmpt  45211  infnsuprnmpt  45287  suprclrnmpt  45288  fisupclrnmpt  45436  supxrrernmpt  45459  suprleubrnmpt  45460  supxrre3rnmpt  45467  supminfrnmpt  45483  infrpgernmpt  45503  limsupvaluz2  45776  ioorrnopnlem  46342  iunhoiioolem  46713  vonioolem1  46718
  Copyright terms: Public domain W3C validator