| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptn0 | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptn0.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| rnmptn0 | ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | 1 | neneqd 2936 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
| 3 | rnmpt0f.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | rnmpt0f.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 5 | rnmpt0f.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 3, 4, 5 | rnmpt0f 6245 | . . 3 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| 7 | 2, 6 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ ran 𝐹 = ∅) |
| 8 | 7 | neqned 2938 | 1 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ≠ wne 2931 ∅c0 4315 ↦ cmpt 5207 ran crn 5668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-mpt 5208 df-xp 5673 df-rel 5674 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
| This theorem is referenced by: nsgqusf1olem1 33382 suprnmpt 45124 infnsuprnmpt 45202 suprclrnmpt 45203 fisupclrnmpt 45354 supxrrernmpt 45377 suprleubrnmpt 45378 supxrre3rnmpt 45385 supminfrnmpt 45401 infrpgernmpt 45421 limsupvaluz2 45698 ioorrnopnlem 46264 iunhoiioolem 46635 vonioolem1 46640 |
| Copyright terms: Public domain | W3C validator |