| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptn0 | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptn0.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| rnmptn0 | ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | 1 | neneqd 2930 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
| 3 | rnmpt0f.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | rnmpt0f.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 5 | rnmpt0f.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 3, 4, 5 | rnmpt0f 6216 | . . 3 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| 7 | 2, 6 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ ran 𝐹 = ∅) |
| 8 | 7 | neqned 2932 | 1 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 ↦ cmpt 5188 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-xp 5644 df-rel 5645 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: nsgqusf1olem1 33384 suprnmpt 45168 infnsuprnmpt 45244 suprclrnmpt 45245 fisupclrnmpt 45394 supxrrernmpt 45417 suprleubrnmpt 45418 supxrre3rnmpt 45425 supminfrnmpt 45441 infrpgernmpt 45461 limsupvaluz2 45736 ioorrnopnlem 46302 iunhoiioolem 46673 vonioolem1 46678 |
| Copyright terms: Public domain | W3C validator |