MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptn0 Structured version   Visualization version   GIF version

Theorem rnmptn0 6238
Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0f.1 𝑥𝜑
rnmpt0f.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0f.3 𝐹 = (𝑥𝐴𝐵)
rnmptn0.a (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
rnmptn0 (𝜑 → ran 𝐹 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptn0
StepHypRef Expression
1 rnmptn0.a . . . 4 (𝜑𝐴 ≠ ∅)
21neneqd 2938 . . 3 (𝜑 → ¬ 𝐴 = ∅)
3 rnmpt0f.1 . . . 4 𝑥𝜑
4 rnmpt0f.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 rnmpt0f.3 . . . 4 𝐹 = (𝑥𝐴𝐵)
63, 4, 5rnmpt0f 6237 . . 3 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
72, 6mtbird 325 . 2 (𝜑 → ¬ ran 𝐹 = ∅)
87neqned 2940 1 (𝜑 → ran 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2933  c0 4313  cmpt 5206  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  nsgqusf1olem1  33433  suprnmpt  45178  infnsuprnmpt  45254  suprclrnmpt  45255  fisupclrnmpt  45405  supxrrernmpt  45428  suprleubrnmpt  45429  supxrre3rnmpt  45436  supminfrnmpt  45452  infrpgernmpt  45472  limsupvaluz2  45747  ioorrnopnlem  46313  iunhoiioolem  46684  vonioolem1  46689
  Copyright terms: Public domain W3C validator