![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnmptn0 | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptn0.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
rnmptn0 | ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2951 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
3 | rnmpt0f.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | rnmpt0f.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
5 | rnmpt0f.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 3, 4, 5 | rnmpt0f 6274 | . . 3 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
7 | 2, 6 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ ran 𝐹 = ∅) |
8 | 7 | neqned 2953 | 1 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: nsgqusf1olem1 33406 suprnmpt 45081 infnsuprnmpt 45159 suprclrnmpt 45160 fisupclrnmpt 45313 supxrrernmpt 45336 suprleubrnmpt 45337 supxrre3rnmpt 45344 supminfrnmpt 45360 infrpgernmpt 45380 limsupvaluz2 45659 ioorrnopnlem 46225 iunhoiioolem 46596 vonioolem1 46601 |
Copyright terms: Public domain | W3C validator |