MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptn0 Structured version   Visualization version   GIF version

Theorem rnmptn0 6266
Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rnmpt0f.1 𝑥𝜑
rnmpt0f.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
rnmpt0f.3 𝐹 = (𝑥𝐴𝐵)
rnmptn0.a (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
rnmptn0 (𝜑 → ran 𝐹 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem rnmptn0
StepHypRef Expression
1 rnmptn0.a . . . 4 (𝜑𝐴 ≠ ∅)
21neneqd 2943 . . 3 (𝜑 → ¬ 𝐴 = ∅)
3 rnmpt0f.1 . . . 4 𝑥𝜑
4 rnmpt0f.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 rnmpt0f.3 . . . 4 𝐹 = (𝑥𝐴𝐵)
63, 4, 5rnmpt0f 6265 . . 3 (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅))
72, 6mtbird 325 . 2 (𝜑 → ¬ ran 𝐹 = ∅)
87neqned 2945 1 (𝜑 → ran 𝐹 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wne 2938  c0 4339  cmpt 5231  ran crn 5690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-xp 5695  df-rel 5696  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  nsgqusf1olem1  33421  suprnmpt  45117  infnsuprnmpt  45195  suprclrnmpt  45196  fisupclrnmpt  45348  supxrrernmpt  45371  suprleubrnmpt  45372  supxrre3rnmpt  45379  supminfrnmpt  45395  infrpgernmpt  45415  limsupvaluz2  45694  ioorrnopnlem  46260  iunhoiioolem  46631  vonioolem1  46636
  Copyright terms: Public domain W3C validator