Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rnmptn0 | Structured version Visualization version GIF version |
Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptn0.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
rnmptn0 | ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
2 | 1 | neneqd 2947 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
3 | rnmpt0f.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | rnmpt0f.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
5 | rnmpt0f.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 3, 4, 5 | rnmpt0f 6135 | . . 3 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
7 | 2, 6 | mtbird 324 | . 2 ⊢ (𝜑 → ¬ ran 𝐹 = ∅) |
8 | 7 | neqned 2949 | 1 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 ↦ cmpt 5153 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: nsgqusf1olem1 31500 suprnmpt 42599 infnsuprnmpt 42685 suprclrnmpt 42686 fisupclrnmpt 42828 supxrrernmpt 42851 suprleubrnmpt 42852 supxrre3rnmpt 42859 supminfrnmpt 42875 infrpgernmpt 42895 limsupvaluz2 43169 ioorrnopnlem 43735 iunhoiioolem 44103 vonioolem1 44108 |
Copyright terms: Public domain | W3C validator |