| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnmptn0 | Structured version Visualization version GIF version | ||
| Description: The range of a function in maps-to notation is nonempty if the domain is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rnmpt0f.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmpt0f.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| rnmpt0f.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptn0.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| Ref | Expression |
|---|---|
| rnmptn0 | ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptn0.a | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 2 | 1 | neneqd 2933 | . . 3 ⊢ (𝜑 → ¬ 𝐴 = ∅) |
| 3 | rnmpt0f.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | rnmpt0f.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 5 | rnmpt0f.3 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 3, 4, 5 | rnmpt0f 6185 | . . 3 ⊢ (𝜑 → (ran 𝐹 = ∅ ↔ 𝐴 = ∅)) |
| 7 | 2, 6 | mtbird 325 | . 2 ⊢ (𝜑 → ¬ ran 𝐹 = ∅) |
| 8 | 7 | neqned 2935 | 1 ⊢ (𝜑 → ran 𝐹 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 ↦ cmpt 5167 ran crn 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: nsgqusf1olem1 33370 suprnmpt 45211 infnsuprnmpt 45287 suprclrnmpt 45288 fisupclrnmpt 45436 supxrrernmpt 45459 suprleubrnmpt 45460 supxrre3rnmpt 45467 supminfrnmpt 45483 infrpgernmpt 45503 limsupvaluz2 45776 ioorrnopnlem 46342 iunhoiioolem 46713 vonioolem1 46718 |
| Copyright terms: Public domain | W3C validator |