Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprubrnmpt2 Structured version   Visualization version   GIF version

Theorem suprubrnmpt2 41877
 Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprubrnmpt2.x 𝑥𝜑
suprubrnmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprubrnmpt2.l (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprubrnmpt2.c (𝜑𝐶𝐴)
suprubrnmpt2.d (𝜑𝐷 ∈ ℝ)
suprubrnmpt2.i (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
suprubrnmpt2 (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)

Proof of Theorem suprubrnmpt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suprubrnmpt2.x . . 3 𝑥𝜑
2 eqid 2801 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprubrnmpt2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 41811 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprubrnmpt2.c . . . 4 (𝜑𝐶𝐴)
6 suprubrnmpt2.d . . . 4 (𝜑𝐷 ∈ ℝ)
7 suprubrnmpt2.i . . . . 5 (𝑥 = 𝐶𝐵 = 𝐷)
82, 7elrnmpt1s 5797 . . . 4 ((𝐶𝐴𝐷 ∈ ℝ) → 𝐷 ∈ ran (𝑥𝐴𝐵))
95, 6, 8syl2anc 587 . . 3 (𝜑𝐷 ∈ ran (𝑥𝐴𝐵))
109ne0d 4254 . 2 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
11 suprubrnmpt2.l . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
121, 11rnmptbdd 41869 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
134, 10, 12, 9suprubd 11594 1 (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2112  ∀wral 3109  ∃wrex 3110   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524  supcsup 8892  ℝcr 10529   < clt 10668   ≤ cle 10669 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator