![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suprubrnmpt2 | Structured version Visualization version GIF version |
Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
suprubrnmpt2.x | ⊢ Ⅎ𝑥𝜑 |
suprubrnmpt2.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
suprubrnmpt2.l | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
suprubrnmpt2.c | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
suprubrnmpt2.d | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
suprubrnmpt2.i | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
suprubrnmpt2 | ⊢ (𝜑 → 𝐷 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suprubrnmpt2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | suprubrnmpt2.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 1, 2, 3 | rnmptssd 44194 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
5 | suprubrnmpt2.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
6 | suprubrnmpt2.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | suprubrnmpt2.i | . . . . 5 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
8 | 2, 7 | elrnmpt1s 5956 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ ℝ) → 𝐷 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
9 | 5, 6, 8 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
10 | 9 | ne0d 4335 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
11 | suprubrnmpt2.l | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
12 | 1, 11 | rnmptbdd 44248 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦) |
13 | 4, 10, 12, 9 | suprubd 12181 | 1 ⊢ (𝜑 → 𝐷 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 class class class wbr 5148 ↦ cmpt 5231 ran crn 5677 supcsup 9439 ℝcr 11113 < clt 11253 ≤ cle 11254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-sup 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |