Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprubrnmpt2 Structured version   Visualization version   GIF version

Theorem suprubrnmpt2 45239
Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprubrnmpt2.x 𝑥𝜑
suprubrnmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprubrnmpt2.l (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprubrnmpt2.c (𝜑𝐶𝐴)
suprubrnmpt2.d (𝜑𝐷 ∈ ℝ)
suprubrnmpt2.i (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
suprubrnmpt2 (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)

Proof of Theorem suprubrnmpt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suprubrnmpt2.x . . 3 𝑥𝜑
2 eqid 2730 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprubrnmpt2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45183 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprubrnmpt2.c . . . 4 (𝜑𝐶𝐴)
6 suprubrnmpt2.d . . . 4 (𝜑𝐷 ∈ ℝ)
7 suprubrnmpt2.i . . . . 5 (𝑥 = 𝐶𝐵 = 𝐷)
82, 7elrnmpt1s 5925 . . . 4 ((𝐶𝐴𝐷 ∈ ℝ) → 𝐷 ∈ ran (𝑥𝐴𝐵))
95, 6, 8syl2anc 584 . . 3 (𝜑𝐷 ∈ ran (𝑥𝐴𝐵))
109ne0d 4307 . 2 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
11 suprubrnmpt2.l . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
121, 11rnmptbdd 45232 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
134, 10, 12, 9suprubd 12151 1 (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3045  wrex 3054   class class class wbr 5109  cmpt 5190  ran crn 5641  supcsup 9397  cr 11073   < clt 11214  cle 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator