Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprubrnmpt2 Structured version   Visualization version   GIF version

Theorem suprubrnmpt2 45246
Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprubrnmpt2.x 𝑥𝜑
suprubrnmpt2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprubrnmpt2.l (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprubrnmpt2.c (𝜑𝐶𝐴)
suprubrnmpt2.d (𝜑𝐷 ∈ ℝ)
suprubrnmpt2.i (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
suprubrnmpt2 (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑦)

Proof of Theorem suprubrnmpt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suprubrnmpt2.x . . 3 𝑥𝜑
2 eqid 2729 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprubrnmpt2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45190 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprubrnmpt2.c . . . 4 (𝜑𝐶𝐴)
6 suprubrnmpt2.d . . . 4 (𝜑𝐷 ∈ ℝ)
7 suprubrnmpt2.i . . . . 5 (𝑥 = 𝐶𝐵 = 𝐷)
82, 7elrnmpt1s 5923 . . . 4 ((𝐶𝐴𝐷 ∈ ℝ) → 𝐷 ∈ ran (𝑥𝐴𝐵))
95, 6, 8syl2anc 584 . . 3 (𝜑𝐷 ∈ ran (𝑥𝐴𝐵))
109ne0d 4305 . 2 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
11 suprubrnmpt2.l . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
121, 11rnmptbdd 45239 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
134, 10, 12, 9suprubd 12145 1 (𝜑𝐷 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cmpt 5188  ran crn 5639  supcsup 9391  cr 11067   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator