Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprclrnmpt Structured version   Visualization version   GIF version

Theorem suprclrnmpt 44255
Description: Closure of the indexed supremum of a nonempty bounded set of reals. Range of a function in maps-to notation can be used, to express an indexed supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprclrnmpt.x 𝑥𝜑
suprclrnmpt.n (𝜑𝐴 ≠ ∅)
suprclrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprclrnmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
suprclrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) ∈ ℝ)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem suprclrnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprclrnmpt.x . . 3 𝑥𝜑
2 eqid 2731 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprclrnmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 44195 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprclrnmpt.n . . 3 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6244 . 2 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 suprclrnmpt.y . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 44249 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
94, 6, 8suprcld 12182 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2105  wne 2939  wral 3060  wrex 3069  c0 4323   class class class wbr 5149  cmpt 5232  ran crn 5678  supcsup 9438  cr 11112   < clt 11253  cle 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-sup 9440  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452
This theorem is referenced by:  smfsuplem1  45827  smfsuplem3  45829  smfinflem  45833
  Copyright terms: Public domain W3C validator