| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suprubrnmpt | Structured version Visualization version GIF version | ||
| Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| suprubrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
| suprubrnmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| suprubrnmpt.e | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
| Ref | Expression |
|---|---|
| suprubrnmpt | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprubrnmpt.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 3 | suprubrnmpt.b | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 4 | 1, 2, 3 | rnmptssd 45174 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 6 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 7 | 2 | elrnmpt1 5902 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 8 | 6, 3, 7 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 9 | 8 | ne0d 4293 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
| 10 | suprubrnmpt.e | . . . 4 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
| 11 | 1, 10 | rnmptbdd 45223 | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦) |
| 13 | 5, 9, 12, 8 | suprubd 12087 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 class class class wbr 5092 ↦ cmpt 5173 ran crn 5620 supcsup 9330 ℝcr 11008 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: uzublem 45409 limsupubuzlem 45693 smfsuplem1 46792 |
| Copyright terms: Public domain | W3C validator |