Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprubrnmpt Structured version   Visualization version   GIF version

Theorem suprubrnmpt 41817
Description: A member of a nonempty indexed set of reals is less than or equal to the set's upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprubrnmpt.x 𝑥𝜑
suprubrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprubrnmpt.e (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
suprubrnmpt ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem suprubrnmpt
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 suprubrnmpt.x . . . 4 𝑥𝜑
2 eqid 2824 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprubrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 41750 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
54adantr 484 . 2 ((𝜑𝑥𝐴) → ran (𝑥𝐴𝐵) ⊆ ℝ)
6 simpr 488 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐴)
72elrnmpt1 5818 . . . 4 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
86, 3, 7syl2anc 587 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
98ne0d 4285 . 2 ((𝜑𝑥𝐴) → ran (𝑥𝐴𝐵) ≠ ∅)
10 suprubrnmpt.e . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
111, 10rnmptbdd 41808 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
1211adantr 484 . 2 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
135, 9, 12, 8suprubd 11602 1 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran (𝑥𝐴𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wnf 1785  wcel 2115  wral 3133  wrex 3134  wss 3920   class class class wbr 5053  cmpt 5133  ran crn 5544  supcsup 8902  cr 10535   < clt 10674  cle 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-sup 8904  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872
This theorem is referenced by:  uzublem  41994  limsupubuzlem  42281  smfsuplem1  43369
  Copyright terms: Public domain W3C validator