Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrrernmpt Structured version   Visualization version   GIF version

Theorem supxrrernmpt 45546
Description: The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supxrrernmpt.x 𝑥𝜑
supxrrernmpt.a (𝜑𝐴 ≠ ∅)
supxrrernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
supxrrernmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
supxrrernmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supxrrernmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 supxrrernmpt.x . . 3 𝑥𝜑
2 eqid 2733 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supxrrernmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45320 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supxrrernmpt.a . . 3 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6198 . 2 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supxrrernmpt.y . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 45369 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
9 supxrre 13230 . 2 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
104, 6, 8, 9syl3anc 1373 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wne 2929  wral 3048  wrex 3057  wss 3898  c0 4282   class class class wbr 5095  cmpt 5176  ran crn 5622  supcsup 9333  cr 11014  *cxr 11154   < clt 11155  cle 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356
This theorem is referenced by:  smfsupxr  46941
  Copyright terms: Public domain W3C validator