![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supxrrernmpt | Structured version Visualization version GIF version |
Description: The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
supxrrernmpt.x | ⊢ Ⅎ𝑥𝜑 |
supxrrernmpt.a | ⊢ (𝜑 → 𝐴 ≠ ∅) |
supxrrernmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
supxrrernmpt.y | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
Ref | Expression |
---|---|
supxrrernmpt | ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrrernmpt.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
3 | supxrrernmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 1, 2, 3 | rnmptssd 43504 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
5 | supxrrernmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
6 | 1, 3, 2, 5 | rnmptn0 6197 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
7 | supxrrernmpt.y | . . 3 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | |
8 | 1, 7 | rnmptbdd 43559 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) |
9 | supxrre 13252 | . 2 ⊢ ((ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝑦) → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) | |
10 | 4, 6, 8, 9 | syl3anc 1372 | 1 ⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) = sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ⊆ wss 3911 ∅c0 4283 class class class wbr 5106 ↦ cmpt 5189 ran crn 5635 supcsup 9381 ℝcr 11055 ℝ*cxr 11193 < clt 11194 ≤ cle 11195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 |
This theorem is referenced by: smfsupxr 45143 |
Copyright terms: Public domain | W3C validator |