Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supxrrernmpt Structured version   Visualization version   GIF version

Theorem supxrrernmpt 42961
Description: The real and extended real indexed suprema match when the indexed real supremum exists. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
supxrrernmpt.x 𝑥𝜑
supxrrernmpt.a (𝜑𝐴 ≠ ∅)
supxrrernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
supxrrernmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
Assertion
Ref Expression
supxrrernmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem supxrrernmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 supxrrernmpt.x . . 3 𝑥𝜑
2 eqid 2738 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supxrrernmpt.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 42735 . 2 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 supxrrernmpt.a . . 3 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6147 . 2 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 supxrrernmpt.y . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 42790 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦)
9 supxrre 13061 . 2 ((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝑦) → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
104, 6, 8, 9syl3anc 1370 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = sup(ran (𝑥𝐴𝐵), ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  supcsup 9199  cr 10870  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  smfsupxr  44349
  Copyright terms: Public domain W3C validator