Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprleubrnmpt Structured version   Visualization version   GIF version

Theorem suprleubrnmpt 42415
 Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprleubrnmpt.x 𝑥𝜑
suprleubrnmpt.a (𝜑𝐴 ≠ ∅)
suprleubrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprleubrnmpt.e (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprleubrnmpt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
suprleubrnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem suprleubrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprleubrnmpt.x . . . 4 𝑥𝜑
2 eqid 2759 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprleubrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 42184 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprleubrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6071 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 suprleubrnmpt.e . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 42240 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
9 suprleubrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ)
10 suprleub 11633 . . 3 (((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦) ∧ 𝐶 ∈ ℝ) → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
114, 6, 8, 9, 10syl31anc 1371 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
12 nfmpt1 5128 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
1312nfrn 5791 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
14 nfv 1916 . . . . . . 7 𝑥 𝑧𝐶
1513, 14nfralw 3154 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶
161, 15nfan 1901 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
17 simpr 489 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
182elrnmpt1 5797 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1917, 3, 18syl2anc 588 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
21 simplr 769 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
22 breq1 5033 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
2322rspcva 3540 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → 𝐵𝐶)
2420, 21, 23syl2anc 588 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
2524ex 417 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → (𝑥𝐴𝐵𝐶))
2616, 25ralrimi 3145 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → ∀𝑥𝐴 𝐵𝐶)
2726ex 417 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∀𝑥𝐴 𝐵𝐶))
28 vex 3414 . . . . . . . . 9 𝑧 ∈ V
292elrnmpt 5795 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
3028, 29ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3130biimpi 219 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
3231adantl 486 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
33 nfra1 3148 . . . . . . . 8 𝑥𝑥𝐴 𝐵𝐶
34 rspa 3136 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
3522biimprcd 253 . . . . . . . . . 10 (𝐵𝐶 → (𝑧 = 𝐵𝑧𝐶))
3634, 35syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧 = 𝐵𝑧𝐶))
3736ex 417 . . . . . . . 8 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝐶)))
3833, 14, 37rexlimd 3242 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
3938adantr 485 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
4032, 39mpd 15 . . . . 5 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝐶)
4140ralrimiva 3114 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
4241a1i 11 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
4327, 42impbid 215 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
4411, 43bitrd 282 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539  Ⅎwnf 1786   ∈ wcel 2112   ≠ wne 2952  ∀wral 3071  ∃wrex 3072  Vcvv 3410   ⊆ wss 3859  ∅c0 4226   class class class wbr 5030   ↦ cmpt 5110  ran crn 5523  supcsup 8927  ℝcr 10564   < clt 10703   ≤ cle 10704 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-op 4527  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5428  df-po 5441  df-so 5442  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-sup 8929  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901 This theorem is referenced by:  smfsuplem1  43798
 Copyright terms: Public domain W3C validator