Step | Hyp | Ref
| Expression |
1 | | suprleubrnmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | | suprleubrnmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
4 | 1, 2, 3 | rnmptssd 42624 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
5 | | suprleubrnmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
6 | 1, 3, 2, 5 | rnmptn0 6136 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
7 | | suprleubrnmpt.e |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
8 | 1, 7 | rnmptbdd 42679 |
. . 3
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦) |
9 | | suprleubrnmpt.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ ℝ) |
10 | | suprleub 11871 |
. . 3
⊢ (((ran
(𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ ∧ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑦) ∧ 𝐶 ∈ ℝ) → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶)) |
11 | 4, 6, 8, 9, 10 | syl31anc 1371 |
. 2
⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶)) |
12 | | nfmpt1 5178 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
13 | 12 | nfrn 5850 |
. . . . . . 7
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
14 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ≤ 𝐶 |
15 | 13, 14 | nfralw 3149 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶 |
16 | 1, 15 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) |
17 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
18 | 2 | elrnmpt1 5856 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
19 | 17, 3, 18 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
20 | 19 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) ∧ 𝑥 ∈ 𝐴) → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) |
22 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑧 = 𝐵 → (𝑧 ≤ 𝐶 ↔ 𝐵 ≤ 𝐶)) |
23 | 22 | rspcva 3550 |
. . . . . . 7
⊢ ((𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) → 𝐵 ≤ 𝐶) |
24 | 20, 21, 23 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
25 | 24 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) → (𝑥 ∈ 𝐴 → 𝐵 ≤ 𝐶)) |
26 | 16, 25 | ralrimi 3139 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
27 | 26 | ex 412 |
. . 3
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
28 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
29 | 2 | elrnmpt 5854 |
. . . . . . . . 9
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
30 | 28, 29 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
31 | 30 | biimpi 215 |
. . . . . . 7
⊢ (𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
32 | 31 | adantl 481 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
33 | | nfra1 3142 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 |
34 | | rspa 3130 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
35 | 22 | biimprcd 249 |
. . . . . . . . . 10
⊢ (𝐵 ≤ 𝐶 → (𝑧 = 𝐵 → 𝑧 ≤ 𝐶)) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 ∧ 𝑥 ∈ 𝐴) → (𝑧 = 𝐵 → 𝑧 ≤ 𝐶)) |
37 | 36 | ex 412 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝐶))) |
38 | 33, 14, 37 | rexlimd 3245 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝐶)) |
39 | 38 | adantr 480 |
. . . . . 6
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝐶)) |
40 | 32, 39 | mpd 15 |
. . . . 5
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 ∧ 𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑧 ≤ 𝐶) |
41 | 40 | ralrimiva 3107 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 𝐵 ≤ 𝐶 → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶) |
42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶 → ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶)) |
43 | 27, 42 | impbid 211 |
. 2
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑧 ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |
44 | 11, 43 | bitrd 278 |
1
⊢ (𝜑 → (sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |