Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprleubrnmpt Structured version   Visualization version   GIF version

Theorem suprleubrnmpt 43647
Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprleubrnmpt.x 𝑥𝜑
suprleubrnmpt.a (𝜑𝐴 ≠ ∅)
suprleubrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprleubrnmpt.e (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprleubrnmpt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
suprleubrnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem suprleubrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprleubrnmpt.x . . . 4 𝑥𝜑
2 eqid 2736 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprleubrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 43406 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprleubrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6196 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 suprleubrnmpt.e . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 43462 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
9 suprleubrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ)
10 suprleub 12121 . . 3 (((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦) ∧ 𝐶 ∈ ℝ) → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
114, 6, 8, 9, 10syl31anc 1373 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
12 nfmpt1 5213 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
1312nfrn 5907 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
14 nfv 1917 . . . . . . 7 𝑥 𝑧𝐶
1513, 14nfralw 3294 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶
161, 15nfan 1902 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
17 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
182elrnmpt1 5913 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1917, 3, 18syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
21 simplr 767 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
22 breq1 5108 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
2322rspcva 3579 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → 𝐵𝐶)
2420, 21, 23syl2anc 584 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
2524ex 413 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → (𝑥𝐴𝐵𝐶))
2616, 25ralrimi 3240 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → ∀𝑥𝐴 𝐵𝐶)
2726ex 413 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∀𝑥𝐴 𝐵𝐶))
28 vex 3449 . . . . . . . . 9 𝑧 ∈ V
292elrnmpt 5911 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
3028, 29ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3130biimpi 215 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
3231adantl 482 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
33 nfra1 3267 . . . . . . . 8 𝑥𝑥𝐴 𝐵𝐶
34 rspa 3231 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
3522biimprcd 249 . . . . . . . . . 10 (𝐵𝐶 → (𝑧 = 𝐵𝑧𝐶))
3634, 35syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧 = 𝐵𝑧𝐶))
3736ex 413 . . . . . . . 8 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝐶)))
3833, 14, 37rexlimd 3249 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
3938adantr 481 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
4032, 39mpd 15 . . . . 5 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝐶)
4140ralrimiva 3143 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
4241a1i 11 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
4327, 42impbid 211 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
4411, 43bitrd 278 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  ran crn 5634  supcsup 9376  cr 11050   < clt 11189  cle 11190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388
This theorem is referenced by:  smfsuplem1  45042
  Copyright terms: Public domain W3C validator