Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprleubrnmpt Structured version   Visualization version   GIF version

Theorem suprleubrnmpt 45425
Description: The supremum of a nonempty bounded indexed set of reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
suprleubrnmpt.x 𝑥𝜑
suprleubrnmpt.a (𝜑𝐴 ≠ ∅)
suprleubrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprleubrnmpt.e (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprleubrnmpt.c (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
suprleubrnmpt (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem suprleubrnmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprleubrnmpt.x . . . 4 𝑥𝜑
2 eqid 2730 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 suprleubrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
41, 2, 3rnmptssd 45197 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ)
5 suprleubrnmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
61, 3, 2, 5rnmptn0 6220 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
7 suprleubrnmpt.e . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
81, 7rnmptbdd 45246 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦)
9 suprleubrnmpt.c . . 3 (𝜑𝐶 ∈ ℝ)
10 suprleub 12156 . . 3 (((ran (𝑥𝐴𝐵) ⊆ ℝ ∧ ran (𝑥𝐴𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ ran (𝑥𝐴𝐵)𝑤𝑦) ∧ 𝐶 ∈ ℝ) → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
114, 6, 8, 9, 10syl31anc 1375 . 2 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
12 nfmpt1 5209 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
1312nfrn 5919 . . . . . . 7 𝑥ran (𝑥𝐴𝐵)
14 nfv 1914 . . . . . . 7 𝑥 𝑧𝐶
1513, 14nfralw 3287 . . . . . 6 𝑥𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶
161, 15nfan 1899 . . . . 5 𝑥(𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
17 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
182elrnmpt1 5927 . . . . . . . . 9 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran (𝑥𝐴𝐵))
1917, 3, 18syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
2019adantlr 715 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
21 simplr 768 . . . . . . 7 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
22 breq1 5113 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
2322rspcva 3589 . . . . . . 7 ((𝐵 ∈ ran (𝑥𝐴𝐵) ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → 𝐵𝐶)
2420, 21, 23syl2anc 584 . . . . . 6 (((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) ∧ 𝑥𝐴) → 𝐵𝐶)
2524ex 412 . . . . 5 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → (𝑥𝐴𝐵𝐶))
2616, 25ralrimi 3236 . . . 4 ((𝜑 ∧ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶) → ∀𝑥𝐴 𝐵𝐶)
2726ex 412 . . 3 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∀𝑥𝐴 𝐵𝐶))
28 vex 3454 . . . . . . . . 9 𝑧 ∈ V
292elrnmpt 5925 . . . . . . . . 9 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵))
3028, 29ax-mp 5 . . . . . . . 8 (𝑧 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3130biimpi 216 . . . . . . 7 (𝑧 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
3231adantl 481 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → ∃𝑥𝐴 𝑧 = 𝐵)
33 nfra1 3262 . . . . . . . 8 𝑥𝑥𝐴 𝐵𝐶
34 rspa 3227 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → 𝐵𝐶)
3522biimprcd 250 . . . . . . . . . 10 (𝐵𝐶 → (𝑧 = 𝐵𝑧𝐶))
3634, 35syl 17 . . . . . . . . 9 ((∀𝑥𝐴 𝐵𝐶𝑥𝐴) → (𝑧 = 𝐵𝑧𝐶))
3736ex 412 . . . . . . . 8 (∀𝑥𝐴 𝐵𝐶 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝐶)))
3833, 14, 37rexlimd 3245 . . . . . . 7 (∀𝑥𝐴 𝐵𝐶 → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
3938adantr 480 . . . . . 6 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
4032, 39mpd 15 . . . . 5 ((∀𝑥𝐴 𝐵𝐶𝑧 ∈ ran (𝑥𝐴𝐵)) → 𝑧𝐶)
4140ralrimiva 3126 . . . 4 (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶)
4241a1i 11 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝐶 → ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶))
4327, 42impbid 212 . 2 (𝜑 → (∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
4411, 43bitrd 279 1 (𝜑 → (sup(ran (𝑥𝐴𝐵), ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ran crn 5642  supcsup 9398  cr 11074   < clt 11215  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  smfsuplem1  46816
  Copyright terms: Public domain W3C validator