Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpgernmpt Structured version   Visualization version   GIF version

Theorem infrpgernmpt 45476
Description: The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infrpgernmpt.x 𝑥𝜑
infrpgernmpt.a (𝜑𝐴 ≠ ∅)
infrpgernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrpgernmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
infrpgernmpt.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
infrpgernmpt (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem infrpgernmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑤𝜑
2 infrpgernmpt.x . . . 4 𝑥𝜑
3 eqid 2737 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4 infrpgernmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
52, 3, 4rnmptssd 45201 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
6 infrpgernmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
72, 4, 3, 6rnmptn0 6264 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
8 infrpgernmpt.y . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
9 breq1 5146 . . . . . . 7 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
109ralbidv 3178 . . . . . 6 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
1110cbvrexvw 3238 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
128, 11sylib 218 . . . 4 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
1312rnmptlb 45250 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
14 infrpgernmpt.c . . 3 (𝜑𝐶 ∈ ℝ+)
151, 5, 7, 13, 14infrpge 45362 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
16 simpll 767 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝜑)
17 simpr 484 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
18 vex 3484 . . . . . . 7 𝑤 ∈ V
193elrnmpt 5969 . . . . . . 7 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
2018, 19ax-mp 5 . . . . . 6 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
2120biimpi 216 . . . . 5 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
2221ad2antlr 727 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝑤 = 𝐵)
23 nfcv 2905 . . . . . . . 8 𝑥𝑤
24 nfcv 2905 . . . . . . . 8 𝑥
25 nfmpt1 5250 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
2625nfrn 5963 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
27 nfcv 2905 . . . . . . . . . 10 𝑥*
28 nfcv 2905 . . . . . . . . . 10 𝑥 <
2926, 27, 28nfinf 9522 . . . . . . . . 9 𝑥inf(ran (𝑥𝐴𝐵), ℝ*, < )
30 nfcv 2905 . . . . . . . . 9 𝑥 +𝑒
31 nfcv 2905 . . . . . . . . 9 𝑥𝐶
3229, 30, 31nfov 7461 . . . . . . . 8 𝑥(inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
3323, 24, 32nfbr 5190 . . . . . . 7 𝑥 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
342, 33nfan 1899 . . . . . 6 𝑥(𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
35 id 22 . . . . . . . . . . . 12 (𝑤 = 𝐵𝑤 = 𝐵)
3635eqcomd 2743 . . . . . . . . . . 11 (𝑤 = 𝐵𝐵 = 𝑤)
3736adantl 481 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 = 𝑤)
38 simpl 482 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
3937, 38eqbrtrd 5165 . . . . . . . . 9 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4039ex 412 . . . . . . . 8 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4140a1d 25 . . . . . . 7 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4241adantl 481 . . . . . 6 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4334, 42reximdai 3261 . . . . 5 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4443imp 406 . . . 4 (((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) ∧ ∃𝑥𝐴 𝑤 = 𝐵) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4516, 17, 22, 44syl21anc 838 . . 3 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4645rexlimdva2 3157 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4715, 46mpd 15 1 (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  c0 4333   class class class wbr 5143  cmpt 5225  ran crn 5686  (class class class)co 7431  infcinf 9481  cr 11154  *cxr 11294   < clt 11295  cle 11296  +crp 13034   +𝑒 cxad 13152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-rp 13035  df-xadd 13155
This theorem is referenced by:  limsupgtlem  45792
  Copyright terms: Public domain W3C validator