Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpgernmpt Structured version   Visualization version   GIF version

Theorem infrpgernmpt 44660
Description: The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infrpgernmpt.x 𝑥𝜑
infrpgernmpt.a (𝜑𝐴 ≠ ∅)
infrpgernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrpgernmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
infrpgernmpt.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
infrpgernmpt (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem infrpgernmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . 3 𝑤𝜑
2 infrpgernmpt.x . . . 4 𝑥𝜑
3 eqid 2724 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4 infrpgernmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
52, 3, 4rnmptssd 44380 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
6 infrpgernmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
72, 4, 3, 6rnmptn0 6233 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
8 infrpgernmpt.y . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
9 breq1 5141 . . . . . . 7 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
109ralbidv 3169 . . . . . 6 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
1110cbvrexvw 3227 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
128, 11sylib 217 . . . 4 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
1312rnmptlb 44432 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
14 infrpgernmpt.c . . 3 (𝜑𝐶 ∈ ℝ+)
151, 5, 7, 13, 14infrpge 44546 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
16 simpll 764 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝜑)
17 simpr 484 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
18 vex 3470 . . . . . . 7 𝑤 ∈ V
193elrnmpt 5945 . . . . . . 7 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
2018, 19ax-mp 5 . . . . . 6 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
2120biimpi 215 . . . . 5 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
2221ad2antlr 724 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝑤 = 𝐵)
23 nfcv 2895 . . . . . . . 8 𝑥𝑤
24 nfcv 2895 . . . . . . . 8 𝑥
25 nfmpt1 5246 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
2625nfrn 5941 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
27 nfcv 2895 . . . . . . . . . 10 𝑥*
28 nfcv 2895 . . . . . . . . . 10 𝑥 <
2926, 27, 28nfinf 9473 . . . . . . . . 9 𝑥inf(ran (𝑥𝐴𝐵), ℝ*, < )
30 nfcv 2895 . . . . . . . . 9 𝑥 +𝑒
31 nfcv 2895 . . . . . . . . 9 𝑥𝐶
3229, 30, 31nfov 7431 . . . . . . . 8 𝑥(inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
3323, 24, 32nfbr 5185 . . . . . . 7 𝑥 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
342, 33nfan 1894 . . . . . 6 𝑥(𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
35 id 22 . . . . . . . . . . . 12 (𝑤 = 𝐵𝑤 = 𝐵)
3635eqcomd 2730 . . . . . . . . . . 11 (𝑤 = 𝐵𝐵 = 𝑤)
3736adantl 481 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 = 𝑤)
38 simpl 482 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
3937, 38eqbrtrd 5160 . . . . . . . . 9 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4039ex 412 . . . . . . . 8 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4140a1d 25 . . . . . . 7 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4241adantl 481 . . . . . 6 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4334, 42reximdai 3250 . . . . 5 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4443imp 406 . . . 4 (((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) ∧ ∃𝑥𝐴 𝑤 = 𝐵) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4516, 17, 22, 44syl21anc 835 . . 3 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4645rexlimdva2 3149 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4715, 46mpd 15 1 (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wnf 1777  wcel 2098  wne 2932  wral 3053  wrex 3062  Vcvv 3466  c0 4314   class class class wbr 5138  cmpt 5221  ran crn 5667  (class class class)co 7401  infcinf 9432  cr 11105  *cxr 11244   < clt 11245  cle 11246  +crp 12971   +𝑒 cxad 13087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-rp 12972  df-xadd 13090
This theorem is referenced by:  limsupgtlem  44978
  Copyright terms: Public domain W3C validator