Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpgernmpt Structured version   Visualization version   GIF version

Theorem infrpgernmpt 45492
Description: The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infrpgernmpt.x 𝑥𝜑
infrpgernmpt.a (𝜑𝐴 ≠ ∅)
infrpgernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrpgernmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
infrpgernmpt.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
infrpgernmpt (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem infrpgernmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑤𝜑
2 infrpgernmpt.x . . . 4 𝑥𝜑
3 eqid 2735 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4 infrpgernmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
52, 3, 4rnmptssd 45220 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
6 infrpgernmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
72, 4, 3, 6rnmptn0 6233 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
8 infrpgernmpt.y . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
9 breq1 5122 . . . . . . 7 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
109ralbidv 3163 . . . . . 6 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
1110cbvrexvw 3221 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
128, 11sylib 218 . . . 4 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
1312rnmptlb 45267 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
14 infrpgernmpt.c . . 3 (𝜑𝐶 ∈ ℝ+)
151, 5, 7, 13, 14infrpge 45378 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
16 simpll 766 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝜑)
17 simpr 484 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
18 vex 3463 . . . . . . 7 𝑤 ∈ V
193elrnmpt 5938 . . . . . . 7 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
2018, 19ax-mp 5 . . . . . 6 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
2120biimpi 216 . . . . 5 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
2221ad2antlr 727 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝑤 = 𝐵)
23 nfcv 2898 . . . . . . . 8 𝑥𝑤
24 nfcv 2898 . . . . . . . 8 𝑥
25 nfmpt1 5220 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
2625nfrn 5932 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
27 nfcv 2898 . . . . . . . . . 10 𝑥*
28 nfcv 2898 . . . . . . . . . 10 𝑥 <
2926, 27, 28nfinf 9495 . . . . . . . . 9 𝑥inf(ran (𝑥𝐴𝐵), ℝ*, < )
30 nfcv 2898 . . . . . . . . 9 𝑥 +𝑒
31 nfcv 2898 . . . . . . . . 9 𝑥𝐶
3229, 30, 31nfov 7435 . . . . . . . 8 𝑥(inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
3323, 24, 32nfbr 5166 . . . . . . 7 𝑥 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
342, 33nfan 1899 . . . . . 6 𝑥(𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
35 id 22 . . . . . . . . . . . 12 (𝑤 = 𝐵𝑤 = 𝐵)
3635eqcomd 2741 . . . . . . . . . . 11 (𝑤 = 𝐵𝐵 = 𝑤)
3736adantl 481 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 = 𝑤)
38 simpl 482 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
3937, 38eqbrtrd 5141 . . . . . . . . 9 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4039ex 412 . . . . . . . 8 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4140a1d 25 . . . . . . 7 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4241adantl 481 . . . . . 6 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4334, 42reximdai 3244 . . . . 5 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4443imp 406 . . . 4 (((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) ∧ ∃𝑥𝐴 𝑤 = 𝐵) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4516, 17, 22, 44syl21anc 837 . . 3 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4645rexlimdva2 3143 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4715, 46mpd 15 1 (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  c0 4308   class class class wbr 5119  cmpt 5201  ran crn 5655  (class class class)co 7405  infcinf 9453  cr 11128  *cxr 11268   < clt 11269  cle 11270  +crp 13008   +𝑒 cxad 13126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-rp 13009  df-xadd 13129
This theorem is referenced by:  limsupgtlem  45806
  Copyright terms: Public domain W3C validator