Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infrpgernmpt Structured version   Visualization version   GIF version

Theorem infrpgernmpt 45448
Description: The infimum of a nonempty, bounded below, indexed subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
infrpgernmpt.x 𝑥𝜑
infrpgernmpt.a (𝜑𝐴 ≠ ∅)
infrpgernmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
infrpgernmpt.y (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
infrpgernmpt.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
infrpgernmpt (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem infrpgernmpt
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . 3 𝑤𝜑
2 infrpgernmpt.x . . . 4 𝑥𝜑
3 eqid 2734 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
4 infrpgernmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
52, 3, 4rnmptssd 45173 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
6 infrpgernmpt.a . . . 4 (𝜑𝐴 ≠ ∅)
72, 4, 3, 6rnmptn0 6244 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ≠ ∅)
8 infrpgernmpt.y . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵)
9 breq1 5126 . . . . . . 7 (𝑦 = 𝑤 → (𝑦𝐵𝑤𝐵))
109ralbidv 3165 . . . . . 6 (𝑦 = 𝑤 → (∀𝑥𝐴 𝑦𝐵 ↔ ∀𝑥𝐴 𝑤𝐵))
1110cbvrexvw 3224 . . . . 5 (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑦𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
128, 11sylib 218 . . . 4 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 𝑤𝐵)
1312rnmptlb 45222 . . 3 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥𝐴𝐵)𝑤𝑧)
14 infrpgernmpt.c . . 3 (𝜑𝐶 ∈ ℝ+)
151, 5, 7, 13, 14infrpge 45334 . 2 (𝜑 → ∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
16 simpll 766 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝜑)
17 simpr 484 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
18 vex 3467 . . . . . . 7 𝑤 ∈ V
193elrnmpt 5949 . . . . . . 7 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵))
2018, 19ax-mp 5 . . . . . 6 (𝑤 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑤 = 𝐵)
2120biimpi 216 . . . . 5 (𝑤 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 𝑤 = 𝐵)
2221ad2antlr 727 . . . 4 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝑤 = 𝐵)
23 nfcv 2897 . . . . . . . 8 𝑥𝑤
24 nfcv 2897 . . . . . . . 8 𝑥
25 nfmpt1 5230 . . . . . . . . . . 11 𝑥(𝑥𝐴𝐵)
2625nfrn 5943 . . . . . . . . . 10 𝑥ran (𝑥𝐴𝐵)
27 nfcv 2897 . . . . . . . . . 10 𝑥*
28 nfcv 2897 . . . . . . . . . 10 𝑥 <
2926, 27, 28nfinf 9504 . . . . . . . . 9 𝑥inf(ran (𝑥𝐴𝐵), ℝ*, < )
30 nfcv 2897 . . . . . . . . 9 𝑥 +𝑒
31 nfcv 2897 . . . . . . . . 9 𝑥𝐶
3229, 30, 31nfov 7443 . . . . . . . 8 𝑥(inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
3323, 24, 32nfbr 5170 . . . . . . 7 𝑥 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)
342, 33nfan 1898 . . . . . 6 𝑥(𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
35 id 22 . . . . . . . . . . . 12 (𝑤 = 𝐵𝑤 = 𝐵)
3635eqcomd 2740 . . . . . . . . . . 11 (𝑤 = 𝐵𝐵 = 𝑤)
3736adantl 481 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 = 𝑤)
38 simpl 482 . . . . . . . . . 10 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
3937, 38eqbrtrd 5145 . . . . . . . . 9 ((𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) ∧ 𝑤 = 𝐵) → 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4039ex 412 . . . . . . . 8 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4140a1d 25 . . . . . . 7 (𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4241adantl 481 . . . . . 6 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (𝑥𝐴 → (𝑤 = 𝐵𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))))
4334, 42reximdai 3247 . . . . 5 ((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → (∃𝑥𝐴 𝑤 = 𝐵 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4443imp 406 . . . 4 (((𝜑𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) ∧ ∃𝑥𝐴 𝑤 = 𝐵) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4516, 17, 22, 44syl21anc 837 . . 3 (((𝜑𝑤 ∈ ran (𝑥𝐴𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
4645rexlimdva2 3144 . 2 (𝜑 → (∃𝑤 ∈ ran (𝑥𝐴𝐵)𝑤 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶) → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶)))
4715, 46mpd 15 1 (𝜑 → ∃𝑥𝐴 𝐵 ≤ (inf(ran (𝑥𝐴𝐵), ℝ*, < ) +𝑒 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wnf 1782  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3463  c0 4313   class class class wbr 5123  cmpt 5205  ran crn 5666  (class class class)co 7413  infcinf 9463  cr 11136  *cxr 11276   < clt 11277  cle 11278  +crp 13016   +𝑒 cxad 13134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-po 5572  df-so 5573  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-rp 13017  df-xadd 13137
This theorem is referenced by:  limsupgtlem  45764
  Copyright terms: Public domain W3C validator