| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑤𝜑 |
| 2 | | infrpgernmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
| 3 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| 4 | | infrpgernmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
| 5 | 2, 3, 4 | rnmptssd 45201 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆
ℝ*) |
| 6 | | infrpgernmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 7 | 2, 4, 3, 6 | rnmptn0 6264 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
| 8 | | infrpgernmpt.y |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) |
| 9 | | breq1 5146 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) |
| 10 | 9 | ralbidv 3178 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
| 11 | 10 | cbvrexvw 3238 |
. . . . 5
⊢
(∃𝑦 ∈
ℝ ∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
| 12 | 8, 11 | sylib 218 |
. . . 4
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
| 13 | 12 | rnmptlb 45250 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧) |
| 14 | | infrpgernmpt.c |
. . 3
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 15 | 1, 5, 7, 13, 14 | infrpge 45362 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 16 | | simpll 767 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ 𝜑) |
| 17 | | simpr 484 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ 𝑤 ≤ (inf(ran
(𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 18 | | vex 3484 |
. . . . . . 7
⊢ 𝑤 ∈ V |
| 19 | 3 | elrnmpt 5969 |
. . . . . . 7
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵)) |
| 20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
| 21 | 20 | biimpi 216 |
. . . . 5
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
| 22 | 21 | ad2antlr 727 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ ∃𝑥 ∈
𝐴 𝑤 = 𝐵) |
| 23 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
| 24 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑥
≤ |
| 25 | | nfmpt1 5250 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 26 | 25 | nfrn 5963 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
| 27 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ℝ* |
| 28 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥
< |
| 29 | 26, 27, 28 | nfinf 9522 |
. . . . . . . . 9
⊢
Ⅎ𝑥inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, <
) |
| 30 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥
+𝑒 |
| 31 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐶 |
| 32 | 29, 30, 31 | nfov 7461 |
. . . . . . . 8
⊢
Ⅎ𝑥(inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶) |
| 33 | 23, 24, 32 | nfbr 5190 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶) |
| 34 | 2, 33 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 35 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐵 → 𝑤 = 𝐵) |
| 36 | 35 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐵 → 𝐵 = 𝑤) |
| 37 | 36 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
∧ 𝑤 = 𝐵) → 𝐵 = 𝑤) |
| 38 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
∧ 𝑤 = 𝐵) → 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 39 | 37, 38 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
∧ 𝑤 = 𝐵) → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 40 | 39 | ex 412 |
. . . . . . . 8
⊢ (𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
→ (𝑤 = 𝐵 → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))) |
| 41 | 40 | a1d 25 |
. . . . . . 7
⊢ (𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
→ (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)))) |
| 42 | 41 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)))) |
| 43 | 34, 42 | reximdai 3261 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ (∃𝑥 ∈
𝐴 𝑤 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))) |
| 44 | 43 | imp 406 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
∧ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 45 | 16, 17, 22, 44 | syl21anc 838 |
. . 3
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ ∃𝑥 ∈
𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
| 46 | 45 | rexlimdva2 3157 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
→ ∃𝑥 ∈
𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))) |
| 47 | 15, 46 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |