Step | Hyp | Ref
| Expression |
1 | | nfv 1915 |
. . 3
⊢
Ⅎ𝑤𝜑 |
2 | | infrpgernmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
3 | | eqid 2758 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
4 | | infrpgernmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
5 | 2, 3, 4 | rnmptssd 42194 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆
ℝ*) |
6 | | infrpgernmpt.a |
. . . 4
⊢ (𝜑 → 𝐴 ≠ ∅) |
7 | 2, 4, 3, 6 | rnmptn0 6073 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ≠ ∅) |
8 | | infrpgernmpt.y |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵) |
9 | | breq1 5035 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑦 ≤ 𝐵 ↔ 𝑤 ≤ 𝐵)) |
10 | 9 | ralbidv 3126 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (∀𝑥 ∈ 𝐴 𝑦 ≤ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵)) |
11 | 10 | cbvrexvw 3362 |
. . . . 5
⊢
(∃𝑦 ∈
ℝ ∀𝑥 ∈
𝐴 𝑦 ≤ 𝐵 ↔ ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
12 | 8, 11 | sylib 221 |
. . . 4
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑤 ≤ 𝐵) |
13 | 12 | rnmptlb 42248 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ 𝑧) |
14 | | infrpgernmpt.c |
. . 3
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
15 | 1, 5, 7, 13, 14 | infrpge 42351 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
16 | | simpll 766 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ 𝜑) |
17 | | simpr 488 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ 𝑤 ≤ (inf(ran
(𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
18 | | vex 3413 |
. . . . . . 7
⊢ 𝑤 ∈ V |
19 | 3 | elrnmpt 5797 |
. . . . . . 7
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵)) |
20 | 18, 19 | ax-mp 5 |
. . . . . 6
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
21 | 20 | biimpi 219 |
. . . . 5
⊢ (𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
22 | 21 | ad2antlr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ ∃𝑥 ∈
𝐴 𝑤 = 𝐵) |
23 | | nfcv 2919 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
24 | | nfcv 2919 |
. . . . . . . 8
⊢
Ⅎ𝑥
≤ |
25 | | nfmpt1 5130 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
26 | 25 | nfrn 5793 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
27 | | nfcv 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑥ℝ* |
28 | | nfcv 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑥
< |
29 | 26, 27, 28 | nfinf 8979 |
. . . . . . . . 9
⊢
Ⅎ𝑥inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, <
) |
30 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑥
+𝑒 |
31 | | nfcv 2919 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝐶 |
32 | 29, 30, 31 | nfov 7180 |
. . . . . . . 8
⊢
Ⅎ𝑥(inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶) |
33 | 23, 24, 32 | nfbr 5079 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶) |
34 | 2, 33 | nfan 1900 |
. . . . . 6
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
35 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝐵 → 𝑤 = 𝐵) |
36 | 35 | eqcomd 2764 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝐵 → 𝐵 = 𝑤) |
37 | 36 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
∧ 𝑤 = 𝐵) → 𝐵 = 𝑤) |
38 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
∧ 𝑤 = 𝐵) → 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
39 | 37, 38 | eqbrtrd 5054 |
. . . . . . . . 9
⊢ ((𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
∧ 𝑤 = 𝐵) → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
40 | 39 | ex 416 |
. . . . . . . 8
⊢ (𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
→ (𝑤 = 𝐵 → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))) |
41 | 40 | a1d 25 |
. . . . . . 7
⊢ (𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
→ (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)))) |
42 | 41 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)))) |
43 | 34, 42 | reximdai 3235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ (∃𝑥 ∈
𝐴 𝑤 = 𝐵 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))) |
44 | 43 | imp 410 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
∧ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
45 | 16, 17, 22, 44 | syl21anc 836 |
. . 3
⊢ (((𝜑 ∧ 𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) ∧ 𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))
→ ∃𝑥 ∈
𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |
46 | 45 | rexlimdva2 3211 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)𝑤 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)
→ ∃𝑥 ∈
𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶))) |
47 | 15, 46 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 ≤ (inf(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < )
+𝑒 𝐶)) |