MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzres Structured version   Visualization version   GIF version

Theorem gsumzres 18951
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
gsumzres.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzres (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzres
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 gsumzcl.a . . . . . . . 8 (𝜑𝐴𝑉)
3 inex1g 5219 . . . . . . . 8 (𝐴𝑉 → (𝐴𝑊) ∈ V)
42, 3syl 17 . . . . . . 7 (𝜑 → (𝐴𝑊) ∈ V)
5 gsumzcl.0 . . . . . . . 8 0 = (0g𝐺)
65gsumz 17985 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑊) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
71, 4, 6syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
85gsumz 17985 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
91, 2, 8syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
107, 9eqtr4d 2863 . . . . 5 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
1110adantr 481 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
12 resres 5864 . . . . . . . 8 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
13 gsumzcl.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
14 ffn 6510 . . . . . . . . . 10 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
15 fnresdm 6462 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
1613, 14, 153syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐹)
1716reseq1d 5850 . . . . . . . 8 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
1812, 17syl5eqr 2874 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
1918adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
205fvexi 6680 . . . . . . . . . 10 0 ∈ V
2120a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
22 ssid 3992 . . . . . . . . . 10 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
2322a1i 11 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
2413, 2, 21, 23gsumcllem 18950 . . . . . . . 8 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
2524reseq1d 5850 . . . . . . 7 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = ((𝑘𝐴0 ) ↾ (𝐴𝑊)))
26 inss1 4208 . . . . . . . 8 (𝐴𝑊) ⊆ 𝐴
27 resmpt 5903 . . . . . . . 8 ((𝐴𝑊) ⊆ 𝐴 → ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
2826, 27ax-mp 5 . . . . . . 7 ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 )
2925, 28syl6eq 2876 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3019, 29eqtr3d 2862 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹𝑊) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3130oveq2d 7167 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )))
3224oveq2d 7167 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
3311, 31, 323eqtr4d 2870 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
3433ex 413 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
35 f1ofo 6618 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
36 forn 6589 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3735, 36syl 17 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3837ad2antll 725 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
39 gsumzres.s . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
4039adantr 481 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝑊)
4138, 40eqsstrd 4008 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓𝑊)
42 cores 6099 . . . . . . . . 9 (ran 𝑓𝑊 → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4341, 42syl 17 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4443seqeq3d 13370 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓)) = seq1((+g𝐺), (𝐹𝑓)))
4544fveq1d 6668 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
46 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
47 eqid 2825 . . . . . . 7 (+g𝐺) = (+g𝐺)
48 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
491adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
504adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐴𝑊) ∈ V)
5113adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
52 fssres 6540 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5351, 26, 52sylancl 586 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5418feq1d 6495 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
5554biimpa 477 . . . . . . . 8 ((𝜑 ∧ (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
5653, 55syldan 591 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
57 gsumzcl.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
58 resss 5876 . . . . . . . . . 10 (𝐹𝑊) ⊆ 𝐹
5958rnssi 5808 . . . . . . . . 9 ran (𝐹𝑊) ⊆ ran 𝐹
6048cntzidss 18400 . . . . . . . . 9 ((ran 𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹𝑊) ⊆ ran 𝐹) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6157, 59, 60sylancl 586 . . . . . . . 8 (𝜑 → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6261adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
63 simprl 767 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (♯‘(𝐹 supp 0 )) ∈ ℕ)
64 f1of1 6610 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
6564ad2antll 725 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
66 suppssdm 7837 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ dom 𝐹
6766, 13fssdm 6526 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
6867, 39ssind 4212 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
6968adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
70 f1ss 6576 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ (𝐴𝑊)) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
7165, 69, 70syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
72 fex 6987 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
7313, 2, 72syl2anc 584 . . . . . . . . . . . 12 (𝜑𝐹 ∈ V)
74 ressuppss 7843 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
7573, 20, 74sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
76 sseq2 3996 . . . . . . . . . . 11 (ran 𝑓 = (𝐹 supp 0 ) → (((𝐹𝑊) supp 0 ) ⊆ ran 𝑓 ↔ ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 )))
7775, 76syl5ibr 247 . . . . . . . . . 10 (ran 𝑓 = (𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7835, 36, 773syl 18 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7978adantl 482 . . . . . . . 8 (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
8079impcom 408 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓)
81 eqid 2825 . . . . . . 7 (((𝐹𝑊) ∘ 𝑓) supp 0 ) = (((𝐹𝑊) ∘ 𝑓) supp 0 )
8246, 5, 47, 48, 49, 50, 56, 62, 63, 71, 80, 81gsumval3 18949 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))))
832adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
8457adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8567adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
86 f1ss 6576 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8765, 85, 86syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8822, 38sseqtrrid 4023 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
89 eqid 2825 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
9046, 5, 47, 48, 49, 83, 51, 84, 63, 87, 88, 89gsumval3 18949 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
9145, 82, 903eqtr4d 2870 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
9291expr 457 . . . 4 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9392exlimdv 1927 . . 3 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9493expimpd 454 . 2 (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
95 gsumzres.w . . 3 (𝜑𝐹 finSupp 0 )
96 fsuppimp 8831 . . . 4 (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))
9796simprd 496 . . 3 (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈ Fin)
98 fz1f1o 15059 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
9995, 97, 983syl 18 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
10034, 94, 99mpjaod 856 1 (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 843   = wceq 1530  wex 1773  wcel 2107  Vcvv 3499  cin 3938  wss 3939  c0 4294   class class class wbr 5062  cmpt 5142  ran crn 5554  cres 5555  ccom 5557  Fun wfun 6345   Fn wfn 6346  wf 6347  1-1wf1 6348  ontowfo 6349  1-1-ontowf1o 6350  cfv 6351  (class class class)co 7151   supp csupp 7824  Fincfn 8501   finSupp cfsupp 8825  1c1 10530  cn 11630  ...cfz 12885  seqcseq 13362  chash 13683  Basecbs 16475  +gcplusg 16557  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17902  Cntzccntz 18377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-cntz 18379
This theorem is referenced by:  gsumres  18955  gsumzsplit  18969  gsumpt  19004  dmdprdsplitlem  19081  dpjidcl  19102  mplcoe5  20169
  Copyright terms: Public domain W3C validator