Step | Hyp | Ref
| Expression |
1 | | gsumzcl.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
2 | | gsumzcl.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
3 | | inex1g 5243 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝑊) ∈ V) |
4 | 2, 3 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ 𝑊) ∈ V) |
5 | | gsumzcl.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
6 | 5 | gsumz 18474 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝐴 ∩ 𝑊) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) = 0 ) |
7 | 1, 4, 6 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) = 0 ) |
8 | 5 | gsumz 18474 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
9 | 1, 2, 8 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
10 | 7, 9 | eqtr4d 2781 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
11 | 10 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
(𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
12 | | resres 5904 |
. . . . . . . 8
⊢ ((𝐹 ↾ 𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴 ∩ 𝑊)) |
13 | | gsumzcl.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
14 | | ffn 6600 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
15 | | fnresdm 6551 |
. . . . . . . . . 10
⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) |
16 | 13, 14, 15 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ 𝐴) = 𝐹) |
17 | 16 | reseq1d 5890 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹 ↾ 𝐴) ↾ 𝑊) = (𝐹 ↾ 𝑊)) |
18 | 12, 17 | eqtr3id 2792 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ (𝐴 ∩ 𝑊)) = (𝐹 ↾ 𝑊)) |
19 | 18 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴 ∩ 𝑊)) = (𝐹 ↾ 𝑊)) |
20 | 5 | fvexi 6788 |
. . . . . . . . . 10
⊢ 0 ∈
V |
21 | 20 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 0 ∈ V) |
22 | | ssid 3943 |
. . . . . . . . . 10
⊢ (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ) |
23 | 22 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )) |
24 | 13, 2, 21, 23 | gsumcllem 19509 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘 ∈ 𝐴 ↦ 0 )) |
25 | 24 | reseq1d 5890 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴 ∩ 𝑊)) = ((𝑘 ∈ 𝐴 ↦ 0 ) ↾ (𝐴 ∩ 𝑊))) |
26 | | inss1 4162 |
. . . . . . . 8
⊢ (𝐴 ∩ 𝑊) ⊆ 𝐴 |
27 | | resmpt 5945 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝑊) ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 0 ) ↾ (𝐴 ∩ 𝑊)) = (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝐴 ↦ 0 ) ↾ (𝐴 ∩ 𝑊)) = (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 ) |
29 | 25, 28 | eqtrdi 2794 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴 ∩ 𝑊)) = (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) |
30 | 19, 29 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ 𝑊) = (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 )) |
31 | 30 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg (𝑘 ∈ (𝐴 ∩ 𝑊) ↦ 0 ))) |
32 | 24 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
𝐹) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
33 | 11, 31, 32 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) |
34 | 33 | ex 413 |
. 2
⊢ (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹))) |
35 | | f1ofo 6723 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 )) |
36 | | forn 6691 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 )) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 )) |
38 | 37 | ad2antll 726 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 )) |
39 | | gsumzres.s |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) |
40 | 39 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝑊) |
41 | 38, 40 | eqsstrd 3959 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 ⊆ 𝑊) |
42 | | cores 6153 |
. . . . . . . . 9
⊢ (ran
𝑓 ⊆ 𝑊 → ((𝐹 ↾ 𝑊) ∘ 𝑓) = (𝐹 ∘ 𝑓)) |
43 | 41, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹 ↾ 𝑊) ∘ 𝑓) = (𝐹 ∘ 𝑓)) |
44 | 43 | seqeq3d 13729 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
seq1((+g‘𝐺), ((𝐹 ↾ 𝑊) ∘ 𝑓)) = seq1((+g‘𝐺), (𝐹 ∘ 𝑓))) |
45 | 44 | fveq1d 6776 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(seq1((+g‘𝐺), ((𝐹 ↾ 𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(𝐹 supp 0 )))) |
46 | | gsumzcl.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
47 | | eqid 2738 |
. . . . . . 7
⊢
(+g‘𝐺) = (+g‘𝐺) |
48 | | gsumzcl.z |
. . . . . . 7
⊢ 𝑍 = (Cntz‘𝐺) |
49 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd) |
50 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐴 ∩ 𝑊) ∈ V) |
51 | 13 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴⟶𝐵) |
52 | | fssres 6640 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐴 ∩ 𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∩ 𝑊)):(𝐴 ∩ 𝑊)⟶𝐵) |
53 | 51, 26, 52 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ↾ (𝐴 ∩ 𝑊)):(𝐴 ∩ 𝑊)⟶𝐵) |
54 | 18 | feq1d 6585 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹 ↾ (𝐴 ∩ 𝑊)):(𝐴 ∩ 𝑊)⟶𝐵 ↔ (𝐹 ↾ 𝑊):(𝐴 ∩ 𝑊)⟶𝐵)) |
55 | 54 | biimpa 477 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹 ↾ (𝐴 ∩ 𝑊)):(𝐴 ∩ 𝑊)⟶𝐵) → (𝐹 ↾ 𝑊):(𝐴 ∩ 𝑊)⟶𝐵) |
56 | 53, 55 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ↾ 𝑊):(𝐴 ∩ 𝑊)⟶𝐵) |
57 | | gsumzcl.c |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
58 | | resss 5916 |
. . . . . . . . . 10
⊢ (𝐹 ↾ 𝑊) ⊆ 𝐹 |
59 | 58 | rnssi 5849 |
. . . . . . . . 9
⊢ ran
(𝐹 ↾ 𝑊) ⊆ ran 𝐹 |
60 | 48 | cntzidss 18944 |
. . . . . . . . 9
⊢ ((ran
𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹 ↾ 𝑊) ⊆ ran 𝐹) → ran (𝐹 ↾ 𝑊) ⊆ (𝑍‘ran (𝐹 ↾ 𝑊))) |
61 | 57, 59, 60 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐹 ↾ 𝑊) ⊆ (𝑍‘ran (𝐹 ↾ 𝑊))) |
62 | 61 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹 ↾ 𝑊) ⊆ (𝑍‘ran (𝐹 ↾ 𝑊))) |
63 | | simprl 768 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) →
(♯‘(𝐹 supp
0 ))
∈ ℕ) |
64 | | f1of1 6715 |
. . . . . . . . 9
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 )) |
65 | 64 | ad2antll 726 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 )) |
66 | | suppssdm 7993 |
. . . . . . . . . . 11
⊢ (𝐹 supp 0 ) ⊆ dom 𝐹 |
67 | 66, 13 | fssdm 6620 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴) |
68 | 67, 39 | ssind 4166 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴 ∩ 𝑊)) |
69 | 68 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐴 ∩ 𝑊)) |
70 | | f1ss 6676 |
. . . . . . . 8
⊢ ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ (𝐴 ∩ 𝑊)) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴 ∩ 𝑊)) |
71 | 65, 69, 70 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴 ∩ 𝑊)) |
72 | 13, 2 | fexd 7103 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 ∈ V) |
73 | | ressuppss 7999 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ ((𝐹 ↾ 𝑊) supp 0 ) ⊆ (𝐹 supp 0 )) |
74 | 72, 20, 73 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐹 ↾ 𝑊) supp 0 ) ⊆ (𝐹 supp 0 )) |
75 | | sseq2 3947 |
. . . . . . . . . . 11
⊢ (ran
𝑓 = (𝐹 supp 0 ) → (((𝐹 ↾ 𝑊) supp 0 ) ⊆ ran 𝑓 ↔ ((𝐹 ↾ 𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))) |
76 | 74, 75 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (ran
𝑓 = (𝐹 supp 0 ) → (𝜑 → ((𝐹 ↾ 𝑊) supp 0 ) ⊆ ran 𝑓)) |
77 | 35, 36, 76 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝜑 → ((𝐹 ↾ 𝑊) supp 0 ) ⊆ ran 𝑓)) |
78 | 77 | adantl 482 |
. . . . . . . 8
⊢
(((♯‘(𝐹
supp 0 ))
∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝜑 → ((𝐹 ↾ 𝑊) supp 0 ) ⊆ ran 𝑓)) |
79 | 78 | impcom 408 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹 ↾ 𝑊) supp 0 ) ⊆ ran 𝑓) |
80 | | eqid 2738 |
. . . . . . 7
⊢ (((𝐹 ↾ 𝑊) ∘ 𝑓) supp 0 ) = (((𝐹 ↾ 𝑊) ∘ 𝑓) supp 0 ) |
81 | 46, 5, 47, 48, 49, 50, 56, 62, 63, 71, 79, 80 | gsumval3 19508 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
(𝐹 ↾ 𝑊)) =
(seq1((+g‘𝐺), ((𝐹 ↾ 𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 )))) |
82 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴 ∈ 𝑉) |
83 | 57 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
84 | 67 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴) |
85 | | f1ss 6676 |
. . . . . . . 8
⊢ ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) |
86 | 65, 84, 85 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→𝐴) |
87 | 22, 38 | sseqtrrid 3974 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
88 | | eqid 2738 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
89 | 46, 5, 47, 48, 49, 82, 51, 83, 63, 86, 87, 88 | gsumval3 19508 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
𝐹) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(𝐹 supp 0 )))) |
90 | 45, 81, 89 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) |
91 | 90 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) →
(𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹))) |
92 | 91 | exlimdv 1936 |
. . 3
⊢ ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹))) |
93 | 92 | expimpd 454 |
. 2
⊢ (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg
(𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹))) |
94 | | gsumzres.w |
. . 3
⊢ (𝜑 → 𝐹 finSupp 0 ) |
95 | | fsuppimp 9134 |
. . . 4
⊢ (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈
Fin)) |
96 | 95 | simprd 496 |
. . 3
⊢ (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈
Fin) |
97 | | fz1f1o 15422 |
. . 3
⊢ ((𝐹 supp 0 ) ∈ Fin →
((𝐹 supp 0 ) = ∅ ∨
((♯‘(𝐹 supp
0 ))
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))) |
98 | 94, 96, 97 | 3syl 18 |
. 2
⊢ (𝜑 → ((𝐹 supp 0 ) = ∅ ∨
((♯‘(𝐹 supp
0 ))
∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )))) |
99 | 34, 93, 98 | mpjaod 857 |
1
⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝑊)) = (𝐺 Σg 𝐹)) |