MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzres Structured version   Visualization version   GIF version

Theorem gsumzres 19029
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
gsumzres.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzres (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzres
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 gsumzcl.a . . . . . . . 8 (𝜑𝐴𝑉)
3 inex1g 5223 . . . . . . . 8 (𝐴𝑉 → (𝐴𝑊) ∈ V)
42, 3syl 17 . . . . . . 7 (𝜑 → (𝐴𝑊) ∈ V)
5 gsumzcl.0 . . . . . . . 8 0 = (0g𝐺)
65gsumz 18000 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑊) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
71, 4, 6syl2anc 586 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
85gsumz 18000 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
91, 2, 8syl2anc 586 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
107, 9eqtr4d 2859 . . . . 5 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
1110adantr 483 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
12 resres 5866 . . . . . . . 8 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
13 gsumzcl.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
14 ffn 6514 . . . . . . . . . 10 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
15 fnresdm 6466 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
1613, 14, 153syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐹)
1716reseq1d 5852 . . . . . . . 8 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
1812, 17syl5eqr 2870 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
1918adantr 483 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
205fvexi 6684 . . . . . . . . . 10 0 ∈ V
2120a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
22 ssid 3989 . . . . . . . . . 10 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
2322a1i 11 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
2413, 2, 21, 23gsumcllem 19028 . . . . . . . 8 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
2524reseq1d 5852 . . . . . . 7 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = ((𝑘𝐴0 ) ↾ (𝐴𝑊)))
26 inss1 4205 . . . . . . . 8 (𝐴𝑊) ⊆ 𝐴
27 resmpt 5905 . . . . . . . 8 ((𝐴𝑊) ⊆ 𝐴 → ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
2826, 27ax-mp 5 . . . . . . 7 ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 )
2925, 28syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3019, 29eqtr3d 2858 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹𝑊) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3130oveq2d 7172 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )))
3224oveq2d 7172 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
3311, 31, 323eqtr4d 2866 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
3433ex 415 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
35 f1ofo 6622 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
36 forn 6593 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3735, 36syl 17 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3837ad2antll 727 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
39 gsumzres.s . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
4039adantr 483 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝑊)
4138, 40eqsstrd 4005 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓𝑊)
42 cores 6102 . . . . . . . . 9 (ran 𝑓𝑊 → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4341, 42syl 17 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4443seqeq3d 13378 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓)) = seq1((+g𝐺), (𝐹𝑓)))
4544fveq1d 6672 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
46 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
47 eqid 2821 . . . . . . 7 (+g𝐺) = (+g𝐺)
48 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
491adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
504adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐴𝑊) ∈ V)
5113adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
52 fssres 6544 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5351, 26, 52sylancl 588 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5418feq1d 6499 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
5554biimpa 479 . . . . . . . 8 ((𝜑 ∧ (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
5653, 55syldan 593 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
57 gsumzcl.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
58 resss 5878 . . . . . . . . . 10 (𝐹𝑊) ⊆ 𝐹
5958rnssi 5810 . . . . . . . . 9 ran (𝐹𝑊) ⊆ ran 𝐹
6048cntzidss 18468 . . . . . . . . 9 ((ran 𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹𝑊) ⊆ ran 𝐹) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6157, 59, 60sylancl 588 . . . . . . . 8 (𝜑 → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6261adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
63 simprl 769 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (♯‘(𝐹 supp 0 )) ∈ ℕ)
64 f1of1 6614 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
6564ad2antll 727 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
66 suppssdm 7843 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ dom 𝐹
6766, 13fssdm 6530 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
6867, 39ssind 4209 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
6968adantr 483 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
70 f1ss 6580 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ (𝐴𝑊)) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
7165, 69, 70syl2anc 586 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
72 fex 6989 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
7313, 2, 72syl2anc 586 . . . . . . . . . . . 12 (𝜑𝐹 ∈ V)
74 ressuppss 7849 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
7573, 20, 74sylancl 588 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
76 sseq2 3993 . . . . . . . . . . 11 (ran 𝑓 = (𝐹 supp 0 ) → (((𝐹𝑊) supp 0 ) ⊆ ran 𝑓 ↔ ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 )))
7775, 76syl5ibr 248 . . . . . . . . . 10 (ran 𝑓 = (𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7835, 36, 773syl 18 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7978adantl 484 . . . . . . . 8 (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
8079impcom 410 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓)
81 eqid 2821 . . . . . . 7 (((𝐹𝑊) ∘ 𝑓) supp 0 ) = (((𝐹𝑊) ∘ 𝑓) supp 0 )
8246, 5, 47, 48, 49, 50, 56, 62, 63, 71, 80, 81gsumval3 19027 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))))
832adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
8457adantr 483 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8567adantr 483 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
86 f1ss 6580 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8765, 85, 86syl2anc 586 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8822, 38sseqtrrid 4020 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
89 eqid 2821 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
9046, 5, 47, 48, 49, 83, 51, 84, 63, 87, 88, 89gsumval3 19027 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
9145, 82, 903eqtr4d 2866 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
9291expr 459 . . . 4 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9392exlimdv 1934 . . 3 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9493expimpd 456 . 2 (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
95 gsumzres.w . . 3 (𝜑𝐹 finSupp 0 )
96 fsuppimp 8839 . . . 4 (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))
9796simprd 498 . . 3 (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈ Fin)
98 fz1f1o 15067 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
9995, 97, 983syl 18 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
10034, 94, 99mpjaod 856 1 (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cin 3935  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  ran crn 5556  cres 5557  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156   supp csupp 7830  Fincfn 8509   finSupp cfsupp 8833  1c1 10538  cn 11638  ...cfz 12893  seqcseq 13370  chash 13691  Basecbs 16483  +gcplusg 16565  0gc0g 16713   Σg cgsu 16714  Mndcmnd 17911  Cntzccntz 18445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-0g 16715  df-gsum 16716  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-cntz 18447
This theorem is referenced by:  gsumres  19033  gsumzsplit  19047  gsumpt  19082  dmdprdsplitlem  19159  dpjidcl  19180  mplcoe5  20249
  Copyright terms: Public domain W3C validator