MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzres Structured version   Visualization version   GIF version

Theorem gsumzres 19890
Description: Extend a finite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 31-May-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzres.s (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
gsumzres.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzres (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))

Proof of Theorem gsumzres
Dummy variables 𝑓 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
2 gsumzcl.a . . . . . . . 8 (𝜑𝐴𝑉)
3 inex1g 5289 . . . . . . . 8 (𝐴𝑉 → (𝐴𝑊) ∈ V)
42, 3syl 17 . . . . . . 7 (𝜑 → (𝐴𝑊) ∈ V)
5 gsumzcl.0 . . . . . . . 8 0 = (0g𝐺)
65gsumz 18814 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝐴𝑊) ∈ V) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
71, 4, 6syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = 0 )
85gsumz 18814 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
91, 2, 8syl2anc 584 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
107, 9eqtr4d 2773 . . . . 5 (𝜑 → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
1110adantr 480 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )) = (𝐺 Σg (𝑘𝐴0 )))
12 resres 5979 . . . . . . . 8 ((𝐹𝐴) ↾ 𝑊) = (𝐹 ↾ (𝐴𝑊))
13 gsumzcl.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝐵)
14 ffn 6706 . . . . . . . . . 10 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
15 fnresdm 6657 . . . . . . . . . 10 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
1613, 14, 153syl 18 . . . . . . . . 9 (𝜑 → (𝐹𝐴) = 𝐹)
1716reseq1d 5965 . . . . . . . 8 (𝜑 → ((𝐹𝐴) ↾ 𝑊) = (𝐹𝑊))
1812, 17eqtr3id 2784 . . . . . . 7 (𝜑 → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
1918adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝐹𝑊))
205fvexi 6890 . . . . . . . . . 10 0 ∈ V
2120a1i 11 . . . . . . . . 9 (𝜑0 ∈ V)
22 ssid 3981 . . . . . . . . . 10 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
2322a1i 11 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
2413, 2, 21, 23gsumcllem 19889 . . . . . . . 8 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
2524reseq1d 5965 . . . . . . 7 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = ((𝑘𝐴0 ) ↾ (𝐴𝑊)))
26 inss1 4212 . . . . . . . 8 (𝐴𝑊) ⊆ 𝐴
27 resmpt 6024 . . . . . . . 8 ((𝐴𝑊) ⊆ 𝐴 → ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
2826, 27ax-mp 5 . . . . . . 7 ((𝑘𝐴0 ) ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 )
2925, 28eqtrdi 2786 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹 ↾ (𝐴𝑊)) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3019, 29eqtr3d 2772 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐹𝑊) = (𝑘 ∈ (𝐴𝑊) ↦ 0 ))
3130oveq2d 7421 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg (𝑘 ∈ (𝐴𝑊) ↦ 0 )))
3224oveq2d 7421 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
3311, 31, 323eqtr4d 2780 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
3433ex 412 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
35 f1ofo 6825 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
36 forn 6793 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3735, 36syl 17 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
3837ad2antll 729 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
39 gsumzres.s . . . . . . . . . . 11 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
4039adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝑊)
4138, 40eqsstrd 3993 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓𝑊)
42 cores 6238 . . . . . . . . 9 (ran 𝑓𝑊 → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4341, 42syl 17 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) ∘ 𝑓) = (𝐹𝑓))
4443seqeq3d 14027 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓)) = seq1((+g𝐺), (𝐹𝑓)))
4544fveq1d 6878 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
46 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
47 eqid 2735 . . . . . . 7 (+g𝐺) = (+g𝐺)
48 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
491adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
504adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐴𝑊) ∈ V)
5113adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
52 fssres 6744 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ (𝐴𝑊) ⊆ 𝐴) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5351, 26, 52sylancl 586 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵)
5418feq1d 6690 . . . . . . . . 9 (𝜑 → ((𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵 ↔ (𝐹𝑊):(𝐴𝑊)⟶𝐵))
5554biimpa 476 . . . . . . . 8 ((𝜑 ∧ (𝐹 ↾ (𝐴𝑊)):(𝐴𝑊)⟶𝐵) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
5653, 55syldan 591 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑊):(𝐴𝑊)⟶𝐵)
57 gsumzcl.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
58 resss 5988 . . . . . . . . . 10 (𝐹𝑊) ⊆ 𝐹
5958rnssi 5920 . . . . . . . . 9 ran (𝐹𝑊) ⊆ ran 𝐹
6048cntzidss 19323 . . . . . . . . 9 ((ran 𝐹 ⊆ (𝑍‘ran 𝐹) ∧ ran (𝐹𝑊) ⊆ ran 𝐹) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6157, 59, 60sylancl 586 . . . . . . . 8 (𝜑 → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
6261adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran (𝐹𝑊) ⊆ (𝑍‘ran (𝐹𝑊)))
63 simprl 770 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (♯‘(𝐹 supp 0 )) ∈ ℕ)
64 f1of1 6817 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
6564ad2antll 729 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
66 suppssdm 8176 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ dom 𝐹
6766, 13fssdm 6725 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
6867, 39ssind 4216 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
6968adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ (𝐴𝑊))
70 f1ss 6779 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ (𝐴𝑊)) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
7165, 69, 70syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐴𝑊))
7213, 2fexd 7219 . . . . . . . . . . . 12 (𝜑𝐹 ∈ V)
73 ressuppss 8182 . . . . . . . . . . . 12 ((𝐹 ∈ V ∧ 0 ∈ V) → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
7472, 20, 73sylancl 586 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 ))
75 sseq2 3985 . . . . . . . . . . 11 (ran 𝑓 = (𝐹 supp 0 ) → (((𝐹𝑊) supp 0 ) ⊆ ran 𝑓 ↔ ((𝐹𝑊) supp 0 ) ⊆ (𝐹 supp 0 )))
7674, 75imbitrrid 246 . . . . . . . . . 10 (ran 𝑓 = (𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7735, 36, 763syl 18 . . . . . . . . 9 (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7877adantl 481 . . . . . . . 8 (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝜑 → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓))
7978impcom 407 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ((𝐹𝑊) supp 0 ) ⊆ ran 𝑓)
80 eqid 2735 . . . . . . 7 (((𝐹𝑊) ∘ 𝑓) supp 0 ) = (((𝐹𝑊) ∘ 𝑓) supp 0 )
8146, 5, 47, 48, 49, 50, 56, 62, 63, 71, 79, 80gsumval3 19888 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (seq1((+g𝐺), ((𝐹𝑊) ∘ 𝑓))‘(♯‘(𝐹 supp 0 ))))
822adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
8357adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8467adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
85 f1ss 6779 . . . . . . . 8 ((𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8665, 84, 85syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1𝐴)
8722, 38sseqtrrid 4002 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
88 eqid 2735 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
8946, 5, 47, 48, 49, 82, 51, 83, 63, 86, 87, 88gsumval3 19888 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 supp 0 ))))
9045, 81, 893eqtr4d 2780 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
9190expr 456 . . . 4 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9291exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
9392expimpd 453 . 2 (𝜑 → (((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹)))
94 gsumzres.w . . 3 (𝜑𝐹 finSupp 0 )
95 fsuppimp 9380 . . . 4 (𝐹 finSupp 0 → (Fun 𝐹 ∧ (𝐹 supp 0 ) ∈ Fin))
9695simprd 495 . . 3 (𝐹 finSupp 0 → (𝐹 supp 0 ) ∈ Fin)
97 fz1f1o 15726 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
9894, 96, 973syl 18 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((♯‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
9934, 93, 98mpjaod 860 1 (𝜑 → (𝐺 Σg (𝐹𝑊)) = (𝐺 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459  cin 3925  wss 3926  c0 4308   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  1-1wf1 6528  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405   supp csupp 8159  Fincfn 8959   finSupp cfsupp 9373  1c1 11130  cn 12240  ...cfz 13524  seqcseq 14019  chash 14348  Basecbs 17228  +gcplusg 17271  0gc0g 17453   Σg cgsu 17454  Mndcmnd 18712  Cntzccntz 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-cntz 19300
This theorem is referenced by:  gsumres  19894  gsumzsplit  19908  gsumpt  19943  dmdprdsplitlem  20020  dpjidcl  20041  mplcoe5  21998
  Copyright terms: Public domain W3C validator