MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Structured version   Visualization version   GIF version

Theorem gsumzadd 19801
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b 𝐵 = (Base‘𝐺)
gsumzadd.0 0 = (0g𝐺)
gsumzadd.p + = (+g𝐺)
gsumzadd.z 𝑍 = (Cntz‘𝐺)
gsumzadd.g (𝜑𝐺 ∈ Mnd)
gsumzadd.a (𝜑𝐴𝑉)
gsumzadd.fn (𝜑𝐹 finSupp 0 )
gsumzadd.hn (𝜑𝐻 finSupp 0 )
gsumzadd.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzadd.c (𝜑𝑆 ⊆ (𝑍𝑆))
gsumzadd.f (𝜑𝐹:𝐴𝑆)
gsumzadd.h (𝜑𝐻:𝐴𝑆)
Assertion
Ref Expression
gsumzadd (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))

Proof of Theorem gsumzadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2 𝐵 = (Base‘𝐺)
2 gsumzadd.0 . 2 0 = (0g𝐺)
3 gsumzadd.p . 2 + = (+g𝐺)
4 gsumzadd.z . 2 𝑍 = (Cntz‘𝐺)
5 gsumzadd.g . 2 (𝜑𝐺 ∈ Mnd)
6 gsumzadd.a . 2 (𝜑𝐴𝑉)
7 gsumzadd.fn . 2 (𝜑𝐹 finSupp 0 )
8 gsumzadd.hn . 2 (𝜑𝐻 finSupp 0 )
9 eqid 2729 . 2 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
10 gsumzadd.f . . 3 (𝜑𝐹:𝐴𝑆)
11 gsumzadd.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
121submss 18683 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
1311, 12syl 17 . . 3 (𝜑𝑆𝐵)
1410, 13fssd 6669 . 2 (𝜑𝐹:𝐴𝐵)
15 gsumzadd.h . . 3 (𝜑𝐻:𝐴𝑆)
1615, 13fssd 6669 . 2 (𝜑𝐻:𝐴𝐵)
17 gsumzadd.c . . 3 (𝜑𝑆 ⊆ (𝑍𝑆))
1810frnd 6660 . . 3 (𝜑 → ran 𝐹𝑆)
194cntzidss 19219 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2017, 18, 19syl2anc 584 . 2 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2115frnd 6660 . . 3 (𝜑 → ran 𝐻𝑆)
224cntzidss 19219 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐻𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
2317, 21, 22syl2anc 584 . 2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
243submcl 18686 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
25243expb 1120 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2611, 25sylan 580 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 inidm 4178 . . . . 5 (𝐴𝐴) = 𝐴
2826, 10, 15, 6, 6, 27off 7631 . . . 4 (𝜑 → (𝐹f + 𝐻):𝐴𝑆)
2928frnd 6660 . . 3 (𝜑 → ran (𝐹f + 𝐻) ⊆ 𝑆)
304cntzidss 19219 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran (𝐹f + 𝐻) ⊆ 𝑆) → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
3117, 29, 30syl2anc 584 . 2 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
3217adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍𝑆))
3313adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆𝐵)
345adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝐺 ∈ Mnd)
35 vex 3440 . . . . . . . 8 𝑥 ∈ V
3635a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑥 ∈ V)
3711adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ∈ (SubMnd‘𝐺))
38 simpl 482 . . . . . . . 8 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑥𝐴)
39 fssres 6690 . . . . . . . 8 ((𝐻:𝐴𝑆𝑥𝐴) → (𝐻𝑥):𝑥𝑆)
4015, 38, 39syl2an 596 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥):𝑥𝑆)
4123adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
42 resss 5952 . . . . . . . . 9 (𝐻𝑥) ⊆ 𝐻
4342rnssi 5882 . . . . . . . 8 ran (𝐻𝑥) ⊆ ran 𝐻
444cntzidss 19219 . . . . . . . 8 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4541, 43, 44sylancl 586 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4615ffund 6656 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
4746funresd 6525 . . . . . . . . 9 (𝜑 → Fun (𝐻𝑥))
4847adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → Fun (𝐻𝑥))
498fsuppimpd 9259 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ∈ Fin)
5049adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻 supp 0 ) ∈ Fin)
5115, 6fexd 7163 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
522fvexi 6836 . . . . . . . . . . 11 0 ∈ V
53 ressuppss 8116 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5451, 52, 53sylancl 586 . . . . . . . . . 10 (𝜑 → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5554adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5650, 55ssfid 9158 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ∈ Fin)
57 resfunexg 7151 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ V) → (𝐻𝑥) ∈ V)
5846, 35, 57sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐻𝑥) ∈ V)
59 isfsupp 9255 . . . . . . . . . 10 (((𝐻𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6058, 52, 59sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6248, 56, 61mpbir2and 713 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥) finSupp 0 )
632, 4, 34, 36, 37, 40, 45, 62gsumzsubmcl 19797 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ 𝑆)
6463snssd 4760 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆)
651, 4cntz2ss 19214 . . . . 5 ((𝑆𝐵 ∧ {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
6633, 64, 65syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
6732, 66sstrd 3946 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
68 eldifi 4082 . . . . 5 (𝑘 ∈ (𝐴𝑥) → 𝑘𝐴)
6968adantl 481 . . . 4 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑘𝐴)
70 ffvelcdm 7015 . . . 4 ((𝐹:𝐴𝑆𝑘𝐴) → (𝐹𝑘) ∈ 𝑆)
7110, 69, 70syl2an 596 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ 𝑆)
7267, 71sseldd 3936 . 2 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 20, 23, 31, 72gsumzaddlem 19800 1 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cdif 3900  cun 3901  wss 3903  {csn 4577   class class class wbr 5092  ran crn 5620  cres 5621  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611   supp csupp 8093  Fincfn 8872   finSupp cfsupp 9251  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Mndcmnd 18608  SubMndcsubmnd 18656  Cntzccntz 19194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-cntz 19196
This theorem is referenced by:  gsumadd  19802  gsumzsplit  19806
  Copyright terms: Public domain W3C validator