MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Structured version   Visualization version   GIF version

Theorem gsumzadd 19884
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b 𝐵 = (Base‘𝐺)
gsumzadd.0 0 = (0g𝐺)
gsumzadd.p + = (+g𝐺)
gsumzadd.z 𝑍 = (Cntz‘𝐺)
gsumzadd.g (𝜑𝐺 ∈ Mnd)
gsumzadd.a (𝜑𝐴𝑉)
gsumzadd.fn (𝜑𝐹 finSupp 0 )
gsumzadd.hn (𝜑𝐻 finSupp 0 )
gsumzadd.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzadd.c (𝜑𝑆 ⊆ (𝑍𝑆))
gsumzadd.f (𝜑𝐹:𝐴𝑆)
gsumzadd.h (𝜑𝐻:𝐴𝑆)
Assertion
Ref Expression
gsumzadd (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))

Proof of Theorem gsumzadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2 𝐵 = (Base‘𝐺)
2 gsumzadd.0 . 2 0 = (0g𝐺)
3 gsumzadd.p . 2 + = (+g𝐺)
4 gsumzadd.z . 2 𝑍 = (Cntz‘𝐺)
5 gsumzadd.g . 2 (𝜑𝐺 ∈ Mnd)
6 gsumzadd.a . 2 (𝜑𝐴𝑉)
7 gsumzadd.fn . 2 (𝜑𝐹 finSupp 0 )
8 gsumzadd.hn . 2 (𝜑𝐻 finSupp 0 )
9 eqid 2728 . 2 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
10 gsumzadd.f . . 3 (𝜑𝐹:𝐴𝑆)
11 gsumzadd.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
121submss 18768 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
1311, 12syl 17 . . 3 (𝜑𝑆𝐵)
1410, 13fssd 6745 . 2 (𝜑𝐹:𝐴𝐵)
15 gsumzadd.h . . 3 (𝜑𝐻:𝐴𝑆)
1615, 13fssd 6745 . 2 (𝜑𝐻:𝐴𝐵)
17 gsumzadd.c . . 3 (𝜑𝑆 ⊆ (𝑍𝑆))
1810frnd 6735 . . 3 (𝜑 → ran 𝐹𝑆)
194cntzidss 19298 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2017, 18, 19syl2anc 582 . 2 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2115frnd 6735 . . 3 (𝜑 → ran 𝐻𝑆)
224cntzidss 19298 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐻𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
2317, 21, 22syl2anc 582 . 2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
243submcl 18771 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
25243expb 1117 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2611, 25sylan 578 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 inidm 4221 . . . . 5 (𝐴𝐴) = 𝐴
2826, 10, 15, 6, 6, 27off 7709 . . . 4 (𝜑 → (𝐹f + 𝐻):𝐴𝑆)
2928frnd 6735 . . 3 (𝜑 → ran (𝐹f + 𝐻) ⊆ 𝑆)
304cntzidss 19298 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran (𝐹f + 𝐻) ⊆ 𝑆) → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
3117, 29, 30syl2anc 582 . 2 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
3217adantr 479 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍𝑆))
3313adantr 479 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆𝐵)
345adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝐺 ∈ Mnd)
35 vex 3477 . . . . . . . 8 𝑥 ∈ V
3635a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑥 ∈ V)
3711adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ∈ (SubMnd‘𝐺))
38 simpl 481 . . . . . . . 8 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑥𝐴)
39 fssres 6768 . . . . . . . 8 ((𝐻:𝐴𝑆𝑥𝐴) → (𝐻𝑥):𝑥𝑆)
4015, 38, 39syl2an 594 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥):𝑥𝑆)
4123adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
42 resss 6011 . . . . . . . . 9 (𝐻𝑥) ⊆ 𝐻
4342rnssi 5946 . . . . . . . 8 ran (𝐻𝑥) ⊆ ran 𝐻
444cntzidss 19298 . . . . . . . 8 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4541, 43, 44sylancl 584 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4615ffund 6731 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
4746funresd 6601 . . . . . . . . 9 (𝜑 → Fun (𝐻𝑥))
4847adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → Fun (𝐻𝑥))
498fsuppimpd 9401 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ∈ Fin)
5049adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻 supp 0 ) ∈ Fin)
5115, 6fexd 7245 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
522fvexi 6916 . . . . . . . . . . 11 0 ∈ V
53 ressuppss 8194 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5451, 52, 53sylancl 584 . . . . . . . . . 10 (𝜑 → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5554adantr 479 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5650, 55ssfid 9298 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ∈ Fin)
57 resfunexg 7233 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ V) → (𝐻𝑥) ∈ V)
5846, 35, 57sylancl 584 . . . . . . . . . 10 (𝜑 → (𝐻𝑥) ∈ V)
59 isfsupp 9397 . . . . . . . . . 10 (((𝐻𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6058, 52, 59sylancl 584 . . . . . . . . 9 (𝜑 → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6160adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6248, 56, 61mpbir2and 711 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥) finSupp 0 )
632, 4, 34, 36, 37, 40, 45, 62gsumzsubmcl 19880 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ 𝑆)
6463snssd 4817 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆)
651, 4cntz2ss 19293 . . . . 5 ((𝑆𝐵 ∧ {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
6633, 64, 65syl2anc 582 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
6732, 66sstrd 3992 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
68 eldifi 4127 . . . . 5 (𝑘 ∈ (𝐴𝑥) → 𝑘𝐴)
6968adantl 480 . . . 4 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑘𝐴)
70 ffvelcdm 7096 . . . 4 ((𝐹:𝐴𝑆𝑘𝐴) → (𝐹𝑘) ∈ 𝑆)
7110, 69, 70syl2an 594 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ 𝑆)
7267, 71sseldd 3983 . 2 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 20, 23, 31, 72gsumzaddlem 19883 1 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  cdif 3946  cun 3947  wss 3949  {csn 4632   class class class wbr 5152  ran crn 5683  cres 5684  Fun wfun 6547  wf 6549  cfv 6553  (class class class)co 7426  f cof 7689   supp csupp 8171  Fincfn 8970   finSupp cfsupp 9393  Basecbs 17187  +gcplusg 17240  0gc0g 17428   Σg cgsu 17429  Mndcmnd 18701  SubMndcsubmnd 18746  Cntzccntz 19273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-gsum 17431  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-cntz 19275
This theorem is referenced by:  gsumadd  19885  gsumzsplit  19889
  Copyright terms: Public domain W3C validator