| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | gsumzadd.b | . 2
⊢ 𝐵 = (Base‘𝐺) | 
| 2 |  | gsumzadd.0 | . 2
⊢  0 =
(0g‘𝐺) | 
| 3 |  | gsumzadd.p | . 2
⊢  + =
(+g‘𝐺) | 
| 4 |  | gsumzadd.z | . 2
⊢ 𝑍 = (Cntz‘𝐺) | 
| 5 |  | gsumzadd.g | . 2
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 6 |  | gsumzadd.a | . 2
⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| 7 |  | gsumzadd.fn | . 2
⊢ (𝜑 → 𝐹 finSupp 0 ) | 
| 8 |  | gsumzadd.hn | . 2
⊢ (𝜑 → 𝐻 finSupp 0 ) | 
| 9 |  | eqid 2736 | . 2
⊢ ((𝐹 ∪ 𝐻) supp 0 ) = ((𝐹 ∪ 𝐻) supp 0 ) | 
| 10 |  | gsumzadd.f | . . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | 
| 11 |  | gsumzadd.s | . . . 4
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | 
| 12 | 1 | submss 18823 | . . . 4
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ 𝐵) | 
| 13 | 11, 12 | syl 17 | . . 3
⊢ (𝜑 → 𝑆 ⊆ 𝐵) | 
| 14 | 10, 13 | fssd 6752 | . 2
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | 
| 15 |  | gsumzadd.h | . . 3
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | 
| 16 | 15, 13 | fssd 6752 | . 2
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) | 
| 17 |  | gsumzadd.c | . . 3
⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑆)) | 
| 18 | 10 | frnd 6743 | . . 3
⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) | 
| 19 | 4 | cntzidss 19359 | . . 3
⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ ran 𝐹 ⊆ 𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | 
| 20 | 17, 18, 19 | syl2anc 584 | . 2
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | 
| 21 | 15 | frnd 6743 | . . 3
⊢ (𝜑 → ran 𝐻 ⊆ 𝑆) | 
| 22 | 4 | cntzidss 19359 | . . 3
⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ ran 𝐻 ⊆ 𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) | 
| 23 | 17, 21, 22 | syl2anc 584 | . 2
⊢ (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) | 
| 24 | 3 | submcl 18826 | . . . . . . 7
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 25 | 24 | 3expb 1120 | . . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 26 | 11, 25 | sylan 580 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | 
| 27 |  | inidm 4226 | . . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 | 
| 28 | 26, 10, 15, 6, 6, 27 | off 7716 | . . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐻):𝐴⟶𝑆) | 
| 29 | 28 | frnd 6743 | . . 3
⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ 𝑆) | 
| 30 | 4 | cntzidss 19359 | . . 3
⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ ran (𝐹 ∘f + 𝐻) ⊆ 𝑆) → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) | 
| 31 | 17, 29, 30 | syl2anc 584 | . 2
⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) | 
| 32 | 17 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ⊆ (𝑍‘𝑆)) | 
| 33 | 13 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ⊆ 𝐵) | 
| 34 | 5 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝐺 ∈ Mnd) | 
| 35 |  | vex 3483 | . . . . . . . 8
⊢ 𝑥 ∈ V | 
| 36 | 35 | a1i 11 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑥 ∈ V) | 
| 37 | 11 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ∈ (SubMnd‘𝐺)) | 
| 38 |  | simpl 482 | . . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥)) → 𝑥 ⊆ 𝐴) | 
| 39 |  | fssres 6773 | . . . . . . . 8
⊢ ((𝐻:𝐴⟶𝑆 ∧ 𝑥 ⊆ 𝐴) → (𝐻 ↾ 𝑥):𝑥⟶𝑆) | 
| 40 | 15, 38, 39 | syl2an 596 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐻 ↾ 𝑥):𝑥⟶𝑆) | 
| 41 | 23 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) | 
| 42 |  | resss 6018 | . . . . . . . . 9
⊢ (𝐻 ↾ 𝑥) ⊆ 𝐻 | 
| 43 | 42 | rnssi 5950 | . . . . . . . 8
⊢ ran
(𝐻 ↾ 𝑥) ⊆ ran 𝐻 | 
| 44 | 4 | cntzidss 19359 | . . . . . . . 8
⊢ ((ran
𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻 ↾ 𝑥) ⊆ ran 𝐻) → ran (𝐻 ↾ 𝑥) ⊆ (𝑍‘ran (𝐻 ↾ 𝑥))) | 
| 45 | 41, 43, 44 | sylancl 586 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ran (𝐻 ↾ 𝑥) ⊆ (𝑍‘ran (𝐻 ↾ 𝑥))) | 
| 46 | 15 | ffund 6739 | . . . . . . . . . 10
⊢ (𝜑 → Fun 𝐻) | 
| 47 | 46 | funresd 6608 | . . . . . . . . 9
⊢ (𝜑 → Fun (𝐻 ↾ 𝑥)) | 
| 48 | 47 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → Fun (𝐻 ↾ 𝑥)) | 
| 49 | 8 | fsuppimpd 9410 | . . . . . . . . . 10
⊢ (𝜑 → (𝐻 supp 0 ) ∈
Fin) | 
| 50 | 49 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐻 supp 0 ) ∈
Fin) | 
| 51 | 15, 6 | fexd 7248 | . . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ V) | 
| 52 | 2 | fvexi 6919 | . . . . . . . . . . 11
⊢  0 ∈
V | 
| 53 |  | ressuppss 8209 | . . . . . . . . . . 11
⊢ ((𝐻 ∈ V ∧ 0 ∈ V)
→ ((𝐻 ↾ 𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) | 
| 54 | 51, 52, 53 | sylancl 586 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐻 ↾ 𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) | 
| 55 | 54 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ((𝐻 ↾ 𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) | 
| 56 | 50, 55 | ssfid 9302 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin) | 
| 57 |  | resfunexg 7236 | . . . . . . . . . . 11
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ V) → (𝐻 ↾ 𝑥) ∈ V) | 
| 58 | 46, 35, 57 | sylancl 586 | . . . . . . . . . 10
⊢ (𝜑 → (𝐻 ↾ 𝑥) ∈ V) | 
| 59 |  | isfsupp 9406 | . . . . . . . . . 10
⊢ (((𝐻 ↾ 𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻 ↾ 𝑥) finSupp 0 ↔ (Fun (𝐻 ↾ 𝑥) ∧ ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin))) | 
| 60 | 58, 52, 59 | sylancl 586 | . . . . . . . . 9
⊢ (𝜑 → ((𝐻 ↾ 𝑥) finSupp 0 ↔ (Fun (𝐻 ↾ 𝑥) ∧ ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin))) | 
| 61 | 60 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ((𝐻 ↾ 𝑥) finSupp 0 ↔ (Fun (𝐻 ↾ 𝑥) ∧ ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin))) | 
| 62 | 48, 56, 61 | mpbir2and 713 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐻 ↾ 𝑥) finSupp 0 ) | 
| 63 | 2, 4, 34, 36, 37, 40, 45, 62 | gsumzsubmcl 19937 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐺 Σg (𝐻 ↾ 𝑥)) ∈ 𝑆) | 
| 64 | 63 | snssd 4808 | . . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → {(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ 𝑆) | 
| 65 | 1, 4 | cntz2ss 19354 | . . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ {(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) | 
| 66 | 33, 64, 65 | syl2anc 584 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝑍‘𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) | 
| 67 | 32, 66 | sstrd 3993 | . . 3
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) | 
| 68 |  | eldifi 4130 | . . . . 5
⊢ (𝑘 ∈ (𝐴 ∖ 𝑥) → 𝑘 ∈ 𝐴) | 
| 69 | 68 | adantl 481 | . . . 4
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥)) → 𝑘 ∈ 𝐴) | 
| 70 |  | ffvelcdm 7100 | . . . 4
⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝑆) | 
| 71 | 10, 69, 70 | syl2an 596 | . . 3
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ 𝑆) | 
| 72 | 67, 71 | sseldd 3983 | . 2
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) | 
| 73 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14,
16, 20, 23, 31, 72 | gsumzaddlem 19940 | 1
⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |