Step | Hyp | Ref
| Expression |
1 | | gsumzadd.b |
. 2
⊢ 𝐵 = (Base‘𝐺) |
2 | | gsumzadd.0 |
. 2
⊢ 0 =
(0g‘𝐺) |
3 | | gsumzadd.p |
. 2
⊢ + =
(+g‘𝐺) |
4 | | gsumzadd.z |
. 2
⊢ 𝑍 = (Cntz‘𝐺) |
5 | | gsumzadd.g |
. 2
⊢ (𝜑 → 𝐺 ∈ Mnd) |
6 | | gsumzadd.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
7 | | gsumzadd.fn |
. 2
⊢ (𝜑 → 𝐹 finSupp 0 ) |
8 | | gsumzadd.hn |
. 2
⊢ (𝜑 → 𝐻 finSupp 0 ) |
9 | | eqid 2738 |
. 2
⊢ ((𝐹 ∪ 𝐻) supp 0 ) = ((𝐹 ∪ 𝐻) supp 0 ) |
10 | | gsumzadd.f |
. . 3
⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
11 | | gsumzadd.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
12 | 1 | submss 18363 |
. . . 4
⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ 𝐵) |
13 | 11, 12 | syl 17 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
14 | 10, 13 | fssd 6602 |
. 2
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
15 | | gsumzadd.h |
. . 3
⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
16 | 15, 13 | fssd 6602 |
. 2
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
17 | | gsumzadd.c |
. . 3
⊢ (𝜑 → 𝑆 ⊆ (𝑍‘𝑆)) |
18 | 10 | frnd 6592 |
. . 3
⊢ (𝜑 → ran 𝐹 ⊆ 𝑆) |
19 | 4 | cntzidss 18859 |
. . 3
⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ ran 𝐹 ⊆ 𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
20 | 17, 18, 19 | syl2anc 583 |
. 2
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
21 | 15 | frnd 6592 |
. . 3
⊢ (𝜑 → ran 𝐻 ⊆ 𝑆) |
22 | 4 | cntzidss 18859 |
. . 3
⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ ran 𝐻 ⊆ 𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
23 | 17, 21, 22 | syl2anc 583 |
. 2
⊢ (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
24 | 3 | submcl 18366 |
. . . . . . 7
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) |
25 | 24 | 3expb 1118 |
. . . . . 6
⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
26 | 11, 25 | sylan 579 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
27 | | inidm 4149 |
. . . . 5
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
28 | 26, 10, 15, 6, 6, 27 | off 7529 |
. . . 4
⊢ (𝜑 → (𝐹 ∘f + 𝐻):𝐴⟶𝑆) |
29 | 28 | frnd 6592 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ 𝑆) |
30 | 4 | cntzidss 18859 |
. . 3
⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ ran (𝐹 ∘f + 𝐻) ⊆ 𝑆) → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) |
31 | 17, 29, 30 | syl2anc 583 |
. 2
⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) |
32 | 17 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ⊆ (𝑍‘𝑆)) |
33 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ⊆ 𝐵) |
34 | 5 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝐺 ∈ Mnd) |
35 | | vex 3426 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
36 | 35 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑥 ∈ V) |
37 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ∈ (SubMnd‘𝐺)) |
38 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥)) → 𝑥 ⊆ 𝐴) |
39 | | fssres 6624 |
. . . . . . . 8
⊢ ((𝐻:𝐴⟶𝑆 ∧ 𝑥 ⊆ 𝐴) → (𝐻 ↾ 𝑥):𝑥⟶𝑆) |
40 | 15, 38, 39 | syl2an 595 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐻 ↾ 𝑥):𝑥⟶𝑆) |
41 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
42 | | resss 5905 |
. . . . . . . . 9
⊢ (𝐻 ↾ 𝑥) ⊆ 𝐻 |
43 | 42 | rnssi 5838 |
. . . . . . . 8
⊢ ran
(𝐻 ↾ 𝑥) ⊆ ran 𝐻 |
44 | 4 | cntzidss 18859 |
. . . . . . . 8
⊢ ((ran
𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻 ↾ 𝑥) ⊆ ran 𝐻) → ran (𝐻 ↾ 𝑥) ⊆ (𝑍‘ran (𝐻 ↾ 𝑥))) |
45 | 41, 43, 44 | sylancl 585 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ran (𝐻 ↾ 𝑥) ⊆ (𝑍‘ran (𝐻 ↾ 𝑥))) |
46 | 15 | ffund 6588 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐻) |
47 | 46 | funresd 6461 |
. . . . . . . . 9
⊢ (𝜑 → Fun (𝐻 ↾ 𝑥)) |
48 | 47 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → Fun (𝐻 ↾ 𝑥)) |
49 | 8 | fsuppimpd 9065 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 supp 0 ) ∈
Fin) |
50 | 49 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐻 supp 0 ) ∈
Fin) |
51 | 15, 6 | fexd 7085 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻 ∈ V) |
52 | 2 | fvexi 6770 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
53 | | ressuppss 7970 |
. . . . . . . . . . 11
⊢ ((𝐻 ∈ V ∧ 0 ∈ V)
→ ((𝐻 ↾ 𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) |
54 | 51, 52, 53 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐻 ↾ 𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) |
55 | 54 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ((𝐻 ↾ 𝑥) supp 0 ) ⊆ (𝐻 supp 0 )) |
56 | 50, 55 | ssfid 8971 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin) |
57 | | resfunexg 7073 |
. . . . . . . . . . 11
⊢ ((Fun
𝐻 ∧ 𝑥 ∈ V) → (𝐻 ↾ 𝑥) ∈ V) |
58 | 46, 35, 57 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 ↾ 𝑥) ∈ V) |
59 | | isfsupp 9062 |
. . . . . . . . . 10
⊢ (((𝐻 ↾ 𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻 ↾ 𝑥) finSupp 0 ↔ (Fun (𝐻 ↾ 𝑥) ∧ ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin))) |
60 | 58, 52, 59 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐻 ↾ 𝑥) finSupp 0 ↔ (Fun (𝐻 ↾ 𝑥) ∧ ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin))) |
61 | 60 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → ((𝐻 ↾ 𝑥) finSupp 0 ↔ (Fun (𝐻 ↾ 𝑥) ∧ ((𝐻 ↾ 𝑥) supp 0 ) ∈
Fin))) |
62 | 48, 56, 61 | mpbir2and 709 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐻 ↾ 𝑥) finSupp 0 ) |
63 | 2, 4, 34, 36, 37, 40, 45, 62 | gsumzsubmcl 19434 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐺 Σg (𝐻 ↾ 𝑥)) ∈ 𝑆) |
64 | 63 | snssd 4739 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → {(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ 𝑆) |
65 | 1, 4 | cntz2ss 18854 |
. . . . 5
⊢ ((𝑆 ⊆ 𝐵 ∧ {(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
66 | 33, 64, 65 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝑍‘𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
67 | 32, 66 | sstrd 3927 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
68 | | eldifi 4057 |
. . . . 5
⊢ (𝑘 ∈ (𝐴 ∖ 𝑥) → 𝑘 ∈ 𝐴) |
69 | 68 | adantl 481 |
. . . 4
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥)) → 𝑘 ∈ 𝐴) |
70 | | ffvelrn 6941 |
. . . 4
⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝑆) |
71 | 10, 69, 70 | syl2an 595 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ 𝑆) |
72 | 67, 71 | sseldd 3918 |
. 2
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
73 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 14,
16, 20, 23, 31, 72 | gsumzaddlem 19437 |
1
⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |