MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzadd Structured version   Visualization version   GIF version

Theorem gsumzadd 19964
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b 𝐵 = (Base‘𝐺)
gsumzadd.0 0 = (0g𝐺)
gsumzadd.p + = (+g𝐺)
gsumzadd.z 𝑍 = (Cntz‘𝐺)
gsumzadd.g (𝜑𝐺 ∈ Mnd)
gsumzadd.a (𝜑𝐴𝑉)
gsumzadd.fn (𝜑𝐹 finSupp 0 )
gsumzadd.hn (𝜑𝐻 finSupp 0 )
gsumzadd.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumzadd.c (𝜑𝑆 ⊆ (𝑍𝑆))
gsumzadd.f (𝜑𝐹:𝐴𝑆)
gsumzadd.h (𝜑𝐻:𝐴𝑆)
Assertion
Ref Expression
gsumzadd (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))

Proof of Theorem gsumzadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.b . 2 𝐵 = (Base‘𝐺)
2 gsumzadd.0 . 2 0 = (0g𝐺)
3 gsumzadd.p . 2 + = (+g𝐺)
4 gsumzadd.z . 2 𝑍 = (Cntz‘𝐺)
5 gsumzadd.g . 2 (𝜑𝐺 ∈ Mnd)
6 gsumzadd.a . 2 (𝜑𝐴𝑉)
7 gsumzadd.fn . 2 (𝜑𝐹 finSupp 0 )
8 gsumzadd.hn . 2 (𝜑𝐻 finSupp 0 )
9 eqid 2740 . 2 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
10 gsumzadd.f . . 3 (𝜑𝐹:𝐴𝑆)
11 gsumzadd.s . . . 4 (𝜑𝑆 ∈ (SubMnd‘𝐺))
121submss 18844 . . . 4 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆𝐵)
1311, 12syl 17 . . 3 (𝜑𝑆𝐵)
1410, 13fssd 6764 . 2 (𝜑𝐹:𝐴𝐵)
15 gsumzadd.h . . 3 (𝜑𝐻:𝐴𝑆)
1615, 13fssd 6764 . 2 (𝜑𝐻:𝐴𝐵)
17 gsumzadd.c . . 3 (𝜑𝑆 ⊆ (𝑍𝑆))
1810frnd 6755 . . 3 (𝜑 → ran 𝐹𝑆)
194cntzidss 19380 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2017, 18, 19syl2anc 583 . 2 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2115frnd 6755 . . 3 (𝜑 → ran 𝐻𝑆)
224cntzidss 19380 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran 𝐻𝑆) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
2317, 21, 22syl2anc 583 . 2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
243submcl 18847 . . . . . . 7 ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑥𝑆𝑦𝑆) → (𝑥 + 𝑦) ∈ 𝑆)
25243expb 1120 . . . . . 6 ((𝑆 ∈ (SubMnd‘𝐺) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2611, 25sylan 579 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
27 inidm 4248 . . . . 5 (𝐴𝐴) = 𝐴
2826, 10, 15, 6, 6, 27off 7732 . . . 4 (𝜑 → (𝐹f + 𝐻):𝐴𝑆)
2928frnd 6755 . . 3 (𝜑 → ran (𝐹f + 𝐻) ⊆ 𝑆)
304cntzidss 19380 . . 3 ((𝑆 ⊆ (𝑍𝑆) ∧ ran (𝐹f + 𝐻) ⊆ 𝑆) → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
3117, 29, 30syl2anc 583 . 2 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
3217adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍𝑆))
3313adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆𝐵)
345adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝐺 ∈ Mnd)
35 vex 3492 . . . . . . . 8 𝑥 ∈ V
3635a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑥 ∈ V)
3711adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ∈ (SubMnd‘𝐺))
38 simpl 482 . . . . . . . 8 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑥𝐴)
39 fssres 6787 . . . . . . . 8 ((𝐻:𝐴𝑆𝑥𝐴) → (𝐻𝑥):𝑥𝑆)
4015, 38, 39syl2an 595 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥):𝑥𝑆)
4123adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
42 resss 6031 . . . . . . . . 9 (𝐻𝑥) ⊆ 𝐻
4342rnssi 5965 . . . . . . . 8 ran (𝐻𝑥) ⊆ ran 𝐻
444cntzidss 19380 . . . . . . . 8 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4541, 43, 44sylancl 585 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ran (𝐻𝑥) ⊆ (𝑍‘ran (𝐻𝑥)))
4615ffund 6751 . . . . . . . . . 10 (𝜑 → Fun 𝐻)
4746funresd 6621 . . . . . . . . 9 (𝜑 → Fun (𝐻𝑥))
4847adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → Fun (𝐻𝑥))
498fsuppimpd 9439 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ∈ Fin)
5049adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻 supp 0 ) ∈ Fin)
5115, 6fexd 7264 . . . . . . . . . . 11 (𝜑𝐻 ∈ V)
522fvexi 6934 . . . . . . . . . . 11 0 ∈ V
53 ressuppss 8224 . . . . . . . . . . 11 ((𝐻 ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5451, 52, 53sylancl 585 . . . . . . . . . 10 (𝜑 → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5554adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ⊆ (𝐻 supp 0 ))
5650, 55ssfid 9329 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) supp 0 ) ∈ Fin)
57 resfunexg 7252 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ V) → (𝐻𝑥) ∈ V)
5846, 35, 57sylancl 585 . . . . . . . . . 10 (𝜑 → (𝐻𝑥) ∈ V)
59 isfsupp 9435 . . . . . . . . . 10 (((𝐻𝑥) ∈ V ∧ 0 ∈ V) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6058, 52, 59sylancl 585 . . . . . . . . 9 (𝜑 → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6160adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → ((𝐻𝑥) finSupp 0 ↔ (Fun (𝐻𝑥) ∧ ((𝐻𝑥) supp 0 ) ∈ Fin)))
6248, 56, 61mpbir2and 712 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐻𝑥) finSupp 0 )
632, 4, 34, 36, 37, 40, 45, 62gsumzsubmcl 19960 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ 𝑆)
6463snssd 4834 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆)
651, 4cntz2ss 19375 . . . . 5 ((𝑆𝐵 ∧ {(𝐺 Σg (𝐻𝑥))} ⊆ 𝑆) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
6633, 64, 65syl2anc 583 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝑍𝑆) ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
6732, 66sstrd 4019 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → 𝑆 ⊆ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
68 eldifi 4154 . . . . 5 (𝑘 ∈ (𝐴𝑥) → 𝑘𝐴)
6968adantl 481 . . . 4 ((𝑥𝐴𝑘 ∈ (𝐴𝑥)) → 𝑘𝐴)
70 ffvelcdm 7115 . . . 4 ((𝐹:𝐴𝑆𝑘𝐴) → (𝐹𝑘) ∈ 𝑆)
7110, 69, 70syl2an 595 . . 3 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ 𝑆)
7267, 71sseldd 4009 . 2 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
731, 2, 3, 4, 5, 6, 7, 8, 9, 14, 16, 20, 23, 31, 72gsumzaddlem 19963 1 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  ran crn 5701  cres 5702  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  SubMndcsubmnd 18817  Cntzccntz 19355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-cntz 19357
This theorem is referenced by:  gsumadd  19965  gsumzsplit  19969
  Copyright terms: Public domain W3C validator