MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfadd Structured version   Visualization version   GIF version

Theorem dprdfadd 20064
Description: Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfadd.b + = (+g𝐺)
Assertion
Ref Expression
dprdfadd (𝜑 → ((𝐹f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Distinct variable groups:   + ,   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   + (𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
31, 2dprddomcld 20045 . . . 4 (𝜑𝐼 ∈ V)
4 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
64, 1, 2, 5dprdfcl 20057 . . . 4 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
7 dprdfadd.4 . . . . 5 (𝜑𝐻𝑊)
84, 1, 2, 7dprdfcl 20057 . . . 4 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (𝑆𝑥))
9 eqid 2740 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
104, 1, 2, 5, 9dprdff 20056 . . . . 5 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1110feqmptd 6990 . . . 4 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
124, 1, 2, 7, 9dprdff 20056 . . . . 5 (𝜑𝐻:𝐼⟶(Base‘𝐺))
1312feqmptd 6990 . . . 4 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
143, 6, 8, 11, 13offval2 7734 . . 3 (𝜑 → (𝐹f + 𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
151, 2dprdf2 20051 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1615ffvelcdmda 7118 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
17 dprdfadd.b . . . . . 6 + = (+g𝐺)
1817subgcl 19176 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥) ∧ (𝐻𝑥) ∈ (𝑆𝑥)) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
1916, 6, 8, 18syl3anc 1371 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
204, 1, 2, 5dprdffsupp 20058 . . . . . . 7 (𝜑𝐹 finSupp 0 )
214, 1, 2, 7dprdffsupp 20058 . . . . . . 7 (𝜑𝐻 finSupp 0 )
2220, 21fsuppunfi 9457 . . . . . 6 (𝜑 → ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈ Fin)
23 ssun1 4201 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
2423a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
25 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
2625fvexi 6934 . . . . . . . . . . 11 0 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2810, 24, 3, 27suppssr 8236 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐹𝑥) = 0 )
29 ssun2 4202 . . . . . . . . . . 11 (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
3112, 30, 3, 27suppssr 8236 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐻𝑥) = 0 )
3228, 31oveq12d 7466 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = ( 0 + 0 ))
33 dprdgrp 20049 . . . . . . . . . . 11 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
341, 33syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
359, 25grpidcl 19005 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
369, 17, 25grplid 19007 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 + 0 ) = 0 )
3734, 35, 36syl2anc2 584 . . . . . . . . 9 (𝜑 → ( 0 + 0 ) = 0 )
3837adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ( 0 + 0 ) = 0 )
3932, 38eqtrd 2780 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = 0 )
4039, 3suppss2 8241 . . . . . 6 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
4122, 40ssfid 9329 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin)
42 funmpt 6616 . . . . . . 7 Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥)))
4342a1i 11 . . . . . 6 (𝜑 → Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
443mptexd 7261 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V)
45 funisfsupp 9437 . . . . . 6 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∧ (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
4643, 44, 27, 45syl3anc 1371 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
4741, 46mpbird 257 . . . 4 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 )
484, 1, 2, 19, 47dprdwd 20055 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ 𝑊)
4914, 48eqeltrd 2844 . 2 (𝜑 → (𝐹f + 𝐻) ∈ 𝑊)
50 eqid 2740 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
5134grpmndd 18986 . . 3 (𝜑𝐺 ∈ Mnd)
52 eqid 2740 . . 3 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
534, 1, 2, 5, 50dprdfcntz 20059 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
544, 1, 2, 7, 50dprdfcntz 20059 . . 3 (𝜑 → ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻))
554, 1, 2, 49, 50dprdfcntz 20059 . . 3 (𝜑 → ran (𝐹f + 𝐻) ⊆ ((Cntz‘𝐺)‘ran (𝐹f + 𝐻)))
5651adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐺 ∈ Mnd)
57 vex 3492 . . . . . . . 8 𝑥 ∈ V
5857a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥 ∈ V)
59 eldifi 4154 . . . . . . . . . . 11 (𝑘 ∈ (𝐼𝑥) → 𝑘𝐼)
6059adantl 481 . . . . . . . . . 10 ((𝑥𝐼𝑘 ∈ (𝐼𝑥)) → 𝑘𝐼)
61 ffvelcdm 7115 . . . . . . . . . 10 ((𝐹:𝐼⟶(Base‘𝐺) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
6210, 60, 61syl2an 595 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ (Base‘𝐺))
6362snssd 4834 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ (Base‘𝐺))
649, 50cntzsubm 19378 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
6556, 63, 64syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
6612adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻:𝐼⟶(Base‘𝐺))
6766ffnd 6748 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻 Fn 𝐼)
68 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥𝐼)
69 fnssres 6703 . . . . . . . . 9 ((𝐻 Fn 𝐼𝑥𝐼) → (𝐻𝑥) Fn 𝑥)
7067, 68, 69syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) Fn 𝑥)
71 fvres 6939 . . . . . . . . . . 11 (𝑦𝑥 → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
7271adantl 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
731ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐺dom DProd 𝑆)
742ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → dom 𝑆 = 𝐼)
7573, 74dprdf2 20051 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑆:𝐼⟶(SubGrp‘𝐺))
7660ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘𝐼)
7775, 76ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
789subgss 19167 . . . . . . . . . . . . 13 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (𝑆𝑘) ⊆ (Base‘𝐺))
7977, 78syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ⊆ (Base‘𝐺))
805ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐹𝑊)
814, 73, 74, 80dprdfcl 20057 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (𝑆𝑘))
8276, 81mpdan 686 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐹𝑘) ∈ (𝑆𝑘))
8382snssd 4834 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → {(𝐹𝑘)} ⊆ (𝑆𝑘))
849, 50cntz2ss 19375 . . . . . . . . . . . 12 (((𝑆𝑘) ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (𝑆𝑘)) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
8579, 83, 84syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
8668sselda 4008 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝐼)
87 simpr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑥)
88 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘 ∈ (𝐼𝑥))
8988eldifbd 3989 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ¬ 𝑘𝑥)
90 nelne2 3046 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ¬ 𝑘𝑥) → 𝑦𝑘)
9187, 89, 90syl2anc 583 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑘)
9273, 74, 86, 76, 91, 50dprdcntz 20052 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑦) ⊆ ((Cntz‘𝐺)‘(𝑆𝑘)))
937ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐻𝑊)
944, 73, 74, 93dprdfcl 20057 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑦𝐼) → (𝐻𝑦) ∈ (𝑆𝑦))
9586, 94mpdan 686 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ (𝑆𝑦))
9692, 95sseldd 4009 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘(𝑆𝑘)))
9785, 96sseldd 4009 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9872, 97eqeltrd 2844 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9998ralrimiva 3152 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
100 ffnfv 7153 . . . . . . . 8 ((𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ ((𝐻𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)})))
10170, 99, 100sylanbrc 582 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}))
102 resss 6031 . . . . . . . . . 10 (𝐻𝑥) ⊆ 𝐻
103102rnssi 5965 . . . . . . . . 9 ran (𝐻𝑥) ⊆ ran 𝐻
10450cntzidss 19380 . . . . . . . . 9 ((ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
10554, 103, 104sylancl 585 . . . . . . . 8 (𝜑 → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
106105adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
10721, 27fsuppres 9462 . . . . . . . 8 (𝜑 → (𝐻𝑥) finSupp 0 )
108107adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) finSupp 0 )
10925, 50, 56, 58, 65, 101, 106, 108gsumzsubmcl 19960 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
110109snssd 4834 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
11166, 68fssresd 6788 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶(Base‘𝐺))
1129, 25, 50, 56, 58, 111, 106, 108gsumzcl 19953 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ (Base‘𝐺))
113112snssd 4834 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺))
1149, 50cntzrec 19376 . . . . . 6 (({(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
115113, 63, 114syl2anc 583 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
116110, 115mpbid 232 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
117 fvex 6933 . . . . 5 (𝐹𝑘) ∈ V
118117snss 4810 . . . 4 ((𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
119116, 118sylibr 234 . . 3 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
1209, 25, 17, 50, 51, 3, 20, 21, 52, 10, 12, 53, 54, 55, 119gsumzaddlem 19963 . 2 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
12149, 120jca 511 1 (𝜑 → ((𝐹f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701  cres 5702  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712   supp csupp 8201  Xcixp 8955  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  SubMndcsubmnd 18817  Grpcgrp 18973  SubGrpcsubg 19160  Cntzccntz 19355   DProd cdprd 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-subg 19163  df-cntz 19357  df-dprd 20039
This theorem is referenced by:  dprdfsub  20065
  Copyright terms: Public domain W3C validator