MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdfadd Structured version   Visualization version   GIF version

Theorem dprdfadd 19133
Description: Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 14-Jul-2019.)
Hypotheses
Ref Expression
eldprdi.0 0 = (0g𝐺)
eldprdi.w 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
eldprdi.1 (𝜑𝐺dom DProd 𝑆)
eldprdi.2 (𝜑 → dom 𝑆 = 𝐼)
eldprdi.3 (𝜑𝐹𝑊)
dprdfadd.4 (𝜑𝐻𝑊)
dprdfadd.b + = (+g𝐺)
Assertion
Ref Expression
dprdfadd (𝜑 → ((𝐹f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Distinct variable groups:   + ,   ,𝐹   ,𝐻   ,𝑖,𝐺   ,𝐼,𝑖   0 ,   𝑆,,𝑖
Allowed substitution hints:   𝜑(,𝑖)   + (𝑖)   𝐹(𝑖)   𝐻(𝑖)   𝑊(,𝑖)   0 (𝑖)

Proof of Theorem dprdfadd
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldprdi.1 . . . . 5 (𝜑𝐺dom DProd 𝑆)
2 eldprdi.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
31, 2dprddomcld 19114 . . . 4 (𝜑𝐼 ∈ V)
4 eldprdi.w . . . . 5 𝑊 = {X𝑖𝐼 (𝑆𝑖) ∣ finSupp 0 }
5 eldprdi.3 . . . . 5 (𝜑𝐹𝑊)
64, 1, 2, 5dprdfcl 19126 . . . 4 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ (𝑆𝑥))
7 dprdfadd.4 . . . . 5 (𝜑𝐻𝑊)
84, 1, 2, 7dprdfcl 19126 . . . 4 ((𝜑𝑥𝐼) → (𝐻𝑥) ∈ (𝑆𝑥))
9 eqid 2822 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
104, 1, 2, 5, 9dprdff 19125 . . . . 5 (𝜑𝐹:𝐼⟶(Base‘𝐺))
1110feqmptd 6715 . . . 4 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
124, 1, 2, 7, 9dprdff 19125 . . . . 5 (𝜑𝐻:𝐼⟶(Base‘𝐺))
1312feqmptd 6715 . . . 4 (𝜑𝐻 = (𝑥𝐼 ↦ (𝐻𝑥)))
143, 6, 8, 11, 13offval2 7411 . . 3 (𝜑 → (𝐹f + 𝐻) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
151, 2dprdf2 19120 . . . . . 6 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
1615ffvelrnda 6833 . . . . 5 ((𝜑𝑥𝐼) → (𝑆𝑥) ∈ (SubGrp‘𝐺))
17 dprdfadd.b . . . . . 6 + = (+g𝐺)
1817subgcl 18280 . . . . 5 (((𝑆𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹𝑥) ∈ (𝑆𝑥) ∧ (𝐻𝑥) ∈ (𝑆𝑥)) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
1916, 6, 8, 18syl3anc 1368 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥) + (𝐻𝑥)) ∈ (𝑆𝑥))
204, 1, 2, 5dprdffsupp 19127 . . . . . . 7 (𝜑𝐹 finSupp 0 )
214, 1, 2, 7dprdffsupp 19127 . . . . . . 7 (𝜑𝐻 finSupp 0 )
2220, 21fsuppunfi 8841 . . . . . 6 (𝜑 → ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈ Fin)
23 ssun1 4123 . . . . . . . . . . 11 (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
2423a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
25 eldprdi.0 . . . . . . . . . . . 12 0 = (0g𝐺)
2625fvexi 6666 . . . . . . . . . . 11 0 ∈ V
2726a1i 11 . . . . . . . . . 10 (𝜑0 ∈ V)
2810, 24, 3, 27suppssr 7848 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐹𝑥) = 0 )
29 ssun2 4124 . . . . . . . . . . 11 (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))
3029a1i 11 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
3112, 30, 3, 27suppssr 7848 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐻𝑥) = 0 )
3228, 31oveq12d 7158 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = ( 0 + 0 ))
33 dprdgrp 19118 . . . . . . . . . . 11 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
341, 33syl 17 . . . . . . . . . 10 (𝜑𝐺 ∈ Grp)
359, 25grpidcl 18122 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
369, 17, 25grplid 18124 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 + 0 ) = 0 )
3734, 35, 36syl2anc2 588 . . . . . . . . 9 (𝜑 → ( 0 + 0 ) = 0 )
3837adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ( 0 + 0 ) = 0 )
3932, 38eqtrd 2857 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹𝑥) + (𝐻𝑥)) = 0 )
4039, 3suppss2 7851 . . . . . 6 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))
4122, 40ssfid 8729 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin)
42 funmpt 6372 . . . . . . 7 Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥)))
4342a1i 11 . . . . . 6 (𝜑 → Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))))
443mptexd 6969 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V)
45 funisfsupp 8826 . . . . . 6 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∧ (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
4643, 44, 27, 45syl3anc 1368 . . . . 5 (𝜑 → ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) supp 0 ) ∈ Fin))
4741, 46mpbird 260 . . . 4 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) finSupp 0 )
484, 1, 2, 19, 47dprdwd 19124 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐻𝑥))) ∈ 𝑊)
4914, 48eqeltrd 2914 . 2 (𝜑 → (𝐹f + 𝐻) ∈ 𝑊)
50 eqid 2822 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
51 grpmnd 18101 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
5234, 51syl 17 . . 3 (𝜑𝐺 ∈ Mnd)
53 eqid 2822 . . 3 ((𝐹𝐻) supp 0 ) = ((𝐹𝐻) supp 0 )
544, 1, 2, 5, 50dprdfcntz 19128 . . 3 (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹))
554, 1, 2, 7, 50dprdfcntz 19128 . . 3 (𝜑 → ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻))
564, 1, 2, 49, 50dprdfcntz 19128 . . 3 (𝜑 → ran (𝐹f + 𝐻) ⊆ ((Cntz‘𝐺)‘ran (𝐹f + 𝐻)))
5752adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐺 ∈ Mnd)
58 vex 3472 . . . . . . . 8 𝑥 ∈ V
5958a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥 ∈ V)
60 eldifi 4078 . . . . . . . . . . 11 (𝑘 ∈ (𝐼𝑥) → 𝑘𝐼)
6160adantl 485 . . . . . . . . . 10 ((𝑥𝐼𝑘 ∈ (𝐼𝑥)) → 𝑘𝐼)
62 ffvelrn 6831 . . . . . . . . . 10 ((𝐹:𝐼⟶(Base‘𝐺) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (Base‘𝐺))
6310, 61, 62syl2an 598 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ (Base‘𝐺))
6463snssd 4715 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ (Base‘𝐺))
659, 50cntzsubm 18457 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
6657, 64, 65syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ((Cntz‘𝐺)‘{(𝐹𝑘)}) ∈ (SubMnd‘𝐺))
6712adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻:𝐼⟶(Base‘𝐺))
6867ffnd 6495 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝐻 Fn 𝐼)
69 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → 𝑥𝐼)
70 fnssres 6450 . . . . . . . . 9 ((𝐻 Fn 𝐼𝑥𝐼) → (𝐻𝑥) Fn 𝑥)
7168, 69, 70syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) Fn 𝑥)
72 fvres 6671 . . . . . . . . . . 11 (𝑦𝑥 → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
7372adantl 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) = (𝐻𝑦))
741ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐺dom DProd 𝑆)
752ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → dom 𝑆 = 𝐼)
7674, 75dprdf2 19120 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑆:𝐼⟶(SubGrp‘𝐺))
7761ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘𝐼)
7876, 77ffvelrnd 6834 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ∈ (SubGrp‘𝐺))
799subgss 18271 . . . . . . . . . . . . 13 ((𝑆𝑘) ∈ (SubGrp‘𝐺) → (𝑆𝑘) ⊆ (Base‘𝐺))
8078, 79syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑘) ⊆ (Base‘𝐺))
815ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐹𝑊)
824, 74, 75, 81dprdfcl 19126 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ (𝑆𝑘))
8377, 82mpdan 686 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐹𝑘) ∈ (𝑆𝑘))
8483snssd 4715 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → {(𝐹𝑘)} ⊆ (𝑆𝑘))
859, 50cntz2ss 18454 . . . . . . . . . . . 12 (((𝑆𝑘) ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (𝑆𝑘)) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
8680, 84, 85syl2anc 587 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((Cntz‘𝐺)‘(𝑆𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
8769sselda 3942 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝐼)
88 simpr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑥)
89 simplrr 777 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑘 ∈ (𝐼𝑥))
9089eldifbd 3921 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ¬ 𝑘𝑥)
91 nelne2 3108 . . . . . . . . . . . . . 14 ((𝑦𝑥 ∧ ¬ 𝑘𝑥) → 𝑦𝑘)
9288, 90, 91syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝑦𝑘)
9374, 75, 87, 77, 92, 50dprdcntz 19121 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝑆𝑦) ⊆ ((Cntz‘𝐺)‘(𝑆𝑘)))
947ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → 𝐻𝑊)
954, 74, 75, 94dprdfcl 19126 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) ∧ 𝑦𝐼) → (𝐻𝑦) ∈ (𝑆𝑦))
9687, 95mpdan 686 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ (𝑆𝑦))
9793, 96sseldd 3943 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘(𝑆𝑘)))
9886, 97sseldd 3943 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → (𝐻𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
9973, 98eqeltrd 2914 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) ∧ 𝑦𝑥) → ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
10099ralrimiva 3174 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
101 ffnfv 6864 . . . . . . . 8 ((𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ ((𝐻𝑥) Fn 𝑥 ∧ ∀𝑦𝑥 ((𝐻𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)})))
10271, 100, 101sylanbrc 586 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹𝑘)}))
103 resss 5856 . . . . . . . . . 10 (𝐻𝑥) ⊆ 𝐻
104103rnssi 5787 . . . . . . . . 9 ran (𝐻𝑥) ⊆ ran 𝐻
10550cntzidss 18459 . . . . . . . . 9 ((ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻) ∧ ran (𝐻𝑥) ⊆ ran 𝐻) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
10655, 104, 105sylancl 589 . . . . . . . 8 (𝜑 → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
107106adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ran (𝐻𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻𝑥)))
10821, 27fsuppres 8846 . . . . . . . 8 (𝜑 → (𝐻𝑥) finSupp 0 )
109108adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥) finSupp 0 )
11025, 50, 57, 59, 66, 102, 107, 109gsumzsubmcl 19029 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
111110snssd 4715 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}))
11267, 69fssresd 6526 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐻𝑥):𝑥⟶(Base‘𝐺))
1139, 25, 50, 57, 59, 112, 107, 109gsumzcl 19022 . . . . . . 7 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐺 Σg (𝐻𝑥)) ∈ (Base‘𝐺))
114113snssd 4715 . . . . . 6 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺))
1159, 50cntzrec 18455 . . . . . 6 (({(𝐺 Σg (𝐻𝑥))} ⊆ (Base‘𝐺) ∧ {(𝐹𝑘)} ⊆ (Base‘𝐺)) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
116114, 64, 115syl2anc 587 . . . . 5 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → ({(𝐺 Σg (𝐻𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹𝑘)}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))})))
117111, 116mpbid 235 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
118 fvex 6665 . . . . 5 (𝐹𝑘) ∈ V
119118snss 4692 . . . 4 ((𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}) ↔ {(𝐹𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
120117, 119sylibr 237 . . 3 ((𝜑 ∧ (𝑥𝐼𝑘 ∈ (𝐼𝑥))) → (𝐹𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻𝑥))}))
1219, 25, 17, 50, 52, 3, 20, 21, 53, 10, 12, 54, 55, 56, 120gsumzaddlem 19032 . 2 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
12249, 121jca 515 1 (𝜑 → ((𝐹f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wne 3011  wral 3130  {crab 3134  Vcvv 3469  cdif 3905  cun 3906  wss 3908  {csn 4539   class class class wbr 5042  cmpt 5122  dom cdm 5532  ran crn 5533  cres 5534  Fun wfun 6328   Fn wfn 6329  wf 6330  cfv 6334  (class class class)co 7140  f cof 7392   supp csupp 7817  Xcixp 8448  Fincfn 8496   finSupp cfsupp 8821  Basecbs 16474  +gcplusg 16556  0gc0g 16704   Σg cgsu 16705  Mndcmnd 17902  SubMndcsubmnd 17946  Grpcgrp 18094  SubGrpcsubg 18264  Cntzccntz 18436   DProd cdprd 19106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-om 7566  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-0g 16706  df-gsum 16707  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-subg 18267  df-cntz 18438  df-dprd 19108
This theorem is referenced by:  dprdfsub  19134
  Copyright terms: Public domain W3C validator