| Step | Hyp | Ref
| Expression |
| 1 | | eldprdi.1 |
. . . . 5
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 2 | | eldprdi.2 |
. . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 3 | 1, 2 | dprddomcld 19989 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ V) |
| 4 | | eldprdi.w |
. . . . 5
⊢ 𝑊 = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } |
| 5 | | eldprdi.3 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| 6 | 4, 1, 2, 5 | dprdfcl 20001 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (𝑆‘𝑥)) |
| 7 | | dprdfadd.4 |
. . . . 5
⊢ (𝜑 → 𝐻 ∈ 𝑊) |
| 8 | 4, 1, 2, 7 | dprdfcl 20001 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐻‘𝑥) ∈ (𝑆‘𝑥)) |
| 9 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 10 | 4, 1, 2, 5, 9 | dprdff 20000 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝐺)) |
| 11 | 10 | feqmptd 6952 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 12 | 4, 1, 2, 7, 9 | dprdff 20000 |
. . . . 5
⊢ (𝜑 → 𝐻:𝐼⟶(Base‘𝐺)) |
| 13 | 12 | feqmptd 6952 |
. . . 4
⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐼 ↦ (𝐻‘𝑥))) |
| 14 | 3, 6, 8, 11, 13 | offval2 7696 |
. . 3
⊢ (𝜑 → (𝐹 ∘f + 𝐻) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥)))) |
| 15 | 1, 2 | dprdf2 19995 |
. . . . . 6
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 16 | 15 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑆‘𝑥) ∈ (SubGrp‘𝐺)) |
| 17 | | dprdfadd.b |
. . . . . 6
⊢ + =
(+g‘𝐺) |
| 18 | 17 | subgcl 19124 |
. . . . 5
⊢ (((𝑆‘𝑥) ∈ (SubGrp‘𝐺) ∧ (𝐹‘𝑥) ∈ (𝑆‘𝑥) ∧ (𝐻‘𝑥) ∈ (𝑆‘𝑥)) → ((𝐹‘𝑥) + (𝐻‘𝑥)) ∈ (𝑆‘𝑥)) |
| 19 | 16, 6, 8, 18 | syl3anc 1373 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥) + (𝐻‘𝑥)) ∈ (𝑆‘𝑥)) |
| 20 | 4, 1, 2, 5 | dprdffsupp 20002 |
. . . . . . 7
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 21 | 4, 1, 2, 7 | dprdffsupp 20002 |
. . . . . . 7
⊢ (𝜑 → 𝐻 finSupp 0 ) |
| 22 | 20, 21 | fsuppunfi 9405 |
. . . . . 6
⊢ (𝜑 → ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) ∈
Fin) |
| 23 | | ssun1 4158 |
. . . . . . . . . . 11
⊢ (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) |
| 24 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))) |
| 25 | | eldprdi.0 |
. . . . . . . . . . . 12
⊢ 0 =
(0g‘𝐺) |
| 26 | 25 | fvexi 6895 |
. . . . . . . . . . 11
⊢ 0 ∈
V |
| 27 | 26 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ V) |
| 28 | 10, 24, 3, 27 | suppssr 8199 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐹‘𝑥) = 0 ) |
| 29 | | ssun2 4159 |
. . . . . . . . . . 11
⊢ (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )) |
| 30 | 29 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))) |
| 31 | 12, 30, 3, 27 | suppssr 8199 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → (𝐻‘𝑥) = 0 ) |
| 32 | 28, 31 | oveq12d 7428 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹‘𝑥) + (𝐻‘𝑥)) = ( 0 + 0 )) |
| 33 | | dprdgrp 19993 |
. . . . . . . . . . 11
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 34 | 1, 33 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 35 | 9, 25 | grpidcl 18953 |
. . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 0 ∈
(Base‘𝐺)) |
| 36 | 9, 17, 25 | grplid 18955 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 0 ∈
(Base‘𝐺)) → (
0 + 0 ) = 0
) |
| 37 | 34, 35, 36 | syl2anc2 585 |
. . . . . . . . 9
⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
| 38 | 37 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ( 0 + 0 ) = 0
) |
| 39 | 32, 38 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐼 ∖ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 )))) → ((𝐹‘𝑥) + (𝐻‘𝑥)) = 0 ) |
| 40 | 39, 3 | suppss2 8204 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) supp 0 ) ⊆ ((𝐹 supp 0 ) ∪ (𝐻 supp 0 ))) |
| 41 | 22, 40 | ssfid 9278 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) supp 0 ) ∈
Fin) |
| 42 | | funmpt 6579 |
. . . . . . 7
⊢ Fun
(𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) |
| 43 | 42 | a1i 11 |
. . . . . 6
⊢ (𝜑 → Fun (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥)))) |
| 44 | 3 | mptexd 7221 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) ∈ V) |
| 45 | | funisfsupp 9384 |
. . . . . 6
⊢ ((Fun
(𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) ∧ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) ∈ V ∧ 0 ∈ V) → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) supp 0 ) ∈
Fin)) |
| 46 | 43, 44, 27, 45 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) finSupp 0 ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) supp 0 ) ∈
Fin)) |
| 47 | 41, 46 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) finSupp 0 ) |
| 48 | 4, 1, 2, 19, 47 | dprdwd 19999 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐻‘𝑥))) ∈ 𝑊) |
| 49 | 14, 48 | eqeltrd 2835 |
. 2
⊢ (𝜑 → (𝐹 ∘f + 𝐻) ∈ 𝑊) |
| 50 | | eqid 2736 |
. . 3
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 51 | 34 | grpmndd 18934 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 52 | | eqid 2736 |
. . 3
⊢ ((𝐹 ∪ 𝐻) supp 0 ) = ((𝐹 ∪ 𝐻) supp 0 ) |
| 53 | 4, 1, 2, 5, 50 | dprdfcntz 20003 |
. . 3
⊢ (𝜑 → ran 𝐹 ⊆ ((Cntz‘𝐺)‘ran 𝐹)) |
| 54 | 4, 1, 2, 7, 50 | dprdfcntz 20003 |
. . 3
⊢ (𝜑 → ran 𝐻 ⊆ ((Cntz‘𝐺)‘ran 𝐻)) |
| 55 | 4, 1, 2, 49, 50 | dprdfcntz 20003 |
. . 3
⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ ((Cntz‘𝐺)‘ran (𝐹 ∘f + 𝐻))) |
| 56 | 51 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → 𝐺 ∈ Mnd) |
| 57 | | vex 3468 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 58 | 57 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → 𝑥 ∈ V) |
| 59 | | eldifi 4111 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝐼 ∖ 𝑥) → 𝑘 ∈ 𝐼) |
| 60 | 59 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥)) → 𝑘 ∈ 𝐼) |
| 61 | | ffvelcdm 7076 |
. . . . . . . . . 10
⊢ ((𝐹:𝐼⟶(Base‘𝐺) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ (Base‘𝐺)) |
| 62 | 10, 60, 61 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (Base‘𝐺)) |
| 63 | 62 | snssd 4790 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → {(𝐹‘𝑘)} ⊆ (Base‘𝐺)) |
| 64 | 9, 50 | cntzsubm 19326 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ {(𝐹‘𝑘)} ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{(𝐹‘𝑘)}) ∈ (SubMnd‘𝐺)) |
| 65 | 56, 63, 64 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → ((Cntz‘𝐺)‘{(𝐹‘𝑘)}) ∈ (SubMnd‘𝐺)) |
| 66 | 12 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → 𝐻:𝐼⟶(Base‘𝐺)) |
| 67 | 66 | ffnd 6712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → 𝐻 Fn 𝐼) |
| 68 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → 𝑥 ⊆ 𝐼) |
| 69 | | fnssres 6666 |
. . . . . . . . 9
⊢ ((𝐻 Fn 𝐼 ∧ 𝑥 ⊆ 𝐼) → (𝐻 ↾ 𝑥) Fn 𝑥) |
| 70 | 67, 68, 69 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐻 ↾ 𝑥) Fn 𝑥) |
| 71 | | fvres 6900 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ 𝑥 → ((𝐻 ↾ 𝑥)‘𝑦) = (𝐻‘𝑦)) |
| 72 | 71 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → ((𝐻 ↾ 𝑥)‘𝑦) = (𝐻‘𝑦)) |
| 73 | 1 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝐺dom DProd 𝑆) |
| 74 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → dom 𝑆 = 𝐼) |
| 75 | 73, 74 | dprdf2 19995 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 76 | 60 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝑘 ∈ 𝐼) |
| 77 | 75, 76 | ffvelcdmd 7080 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝑆‘𝑘) ∈ (SubGrp‘𝐺)) |
| 78 | 9 | subgss 19115 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑘) ∈ (SubGrp‘𝐺) → (𝑆‘𝑘) ⊆ (Base‘𝐺)) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝑆‘𝑘) ⊆ (Base‘𝐺)) |
| 80 | 5 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝐹 ∈ 𝑊) |
| 81 | 4, 73, 74, 80 | dprdfcl 20001 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ (𝑆‘𝑘)) |
| 82 | 76, 81 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑘) ∈ (𝑆‘𝑘)) |
| 83 | 82 | snssd 4790 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → {(𝐹‘𝑘)} ⊆ (𝑆‘𝑘)) |
| 84 | 9, 50 | cntz2ss 19323 |
. . . . . . . . . . . 12
⊢ (((𝑆‘𝑘) ⊆ (Base‘𝐺) ∧ {(𝐹‘𝑘)} ⊆ (𝑆‘𝑘)) → ((Cntz‘𝐺)‘(𝑆‘𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 85 | 79, 83, 84 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → ((Cntz‘𝐺)‘(𝑆‘𝑘)) ⊆ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 86 | 68 | sselda 3963 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝐼) |
| 87 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) |
| 88 | | simplrr 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝑘 ∈ (𝐼 ∖ 𝑥)) |
| 89 | 88 | eldifbd 3944 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → ¬ 𝑘 ∈ 𝑥) |
| 90 | | nelne2 3031 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝑥 ∧ ¬ 𝑘 ∈ 𝑥) → 𝑦 ≠ 𝑘) |
| 91 | 87, 89, 90 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝑦 ≠ 𝑘) |
| 92 | 73, 74, 86, 76, 91, 50 | dprdcntz 19996 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝑆‘𝑦) ⊆ ((Cntz‘𝐺)‘(𝑆‘𝑘))) |
| 93 | 7 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → 𝐻 ∈ 𝑊) |
| 94 | 4, 73, 74, 93 | dprdfcl 20001 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ 𝐼) → (𝐻‘𝑦) ∈ (𝑆‘𝑦)) |
| 95 | 86, 94 | mpdan 687 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ (𝑆‘𝑦)) |
| 96 | 92, 95 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ ((Cntz‘𝐺)‘(𝑆‘𝑘))) |
| 97 | 85, 96 | sseldd 3964 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → (𝐻‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 98 | 72, 97 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) ∧ 𝑦 ∈ 𝑥) → ((𝐻 ↾ 𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 99 | 98 | ralrimiva 3133 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → ∀𝑦 ∈ 𝑥 ((𝐻 ↾ 𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 100 | | ffnfv 7114 |
. . . . . . . 8
⊢ ((𝐻 ↾ 𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹‘𝑘)}) ↔ ((𝐻 ↾ 𝑥) Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝐻 ↾ 𝑥)‘𝑦) ∈ ((Cntz‘𝐺)‘{(𝐹‘𝑘)}))) |
| 101 | 70, 99, 100 | sylanbrc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐻 ↾ 𝑥):𝑥⟶((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 102 | | resss 5993 |
. . . . . . . . . 10
⊢ (𝐻 ↾ 𝑥) ⊆ 𝐻 |
| 103 | 102 | rnssi 5925 |
. . . . . . . . 9
⊢ ran
(𝐻 ↾ 𝑥) ⊆ ran 𝐻 |
| 104 | 50 | cntzidss 19328 |
. . . . . . . . 9
⊢ ((ran
𝐻 ⊆
((Cntz‘𝐺)‘ran
𝐻) ∧ ran (𝐻 ↾ 𝑥) ⊆ ran 𝐻) → ran (𝐻 ↾ 𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻 ↾ 𝑥))) |
| 105 | 54, 103, 104 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐻 ↾ 𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻 ↾ 𝑥))) |
| 106 | 105 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → ran (𝐻 ↾ 𝑥) ⊆ ((Cntz‘𝐺)‘ran (𝐻 ↾ 𝑥))) |
| 107 | 21, 27 | fsuppres 9410 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 ↾ 𝑥) finSupp 0 ) |
| 108 | 107 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐻 ↾ 𝑥) finSupp 0 ) |
| 109 | 25, 50, 56, 58, 65, 101, 106, 108 | gsumzsubmcl 19904 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐺 Σg (𝐻 ↾ 𝑥)) ∈ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 110 | 109 | snssd 4790 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → {(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹‘𝑘)})) |
| 111 | 66, 68 | fssresd 6750 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐻 ↾ 𝑥):𝑥⟶(Base‘𝐺)) |
| 112 | 9, 25, 50, 56, 58, 111, 106, 108 | gsumzcl 19897 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐺 Σg (𝐻 ↾ 𝑥)) ∈ (Base‘𝐺)) |
| 113 | 112 | snssd 4790 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → {(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ (Base‘𝐺)) |
| 114 | 9, 50 | cntzrec 19324 |
. . . . . 6
⊢ (({(𝐺 Σg
(𝐻 ↾ 𝑥))} ⊆ (Base‘𝐺) ∧ {(𝐹‘𝑘)} ⊆ (Base‘𝐺)) → ({(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹‘𝑘)}) ↔ {(𝐹‘𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
| 115 | 113, 63, 114 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → ({(𝐺 Σg (𝐻 ↾ 𝑥))} ⊆ ((Cntz‘𝐺)‘{(𝐹‘𝑘)}) ↔ {(𝐹‘𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
| 116 | 110, 115 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → {(𝐹‘𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
| 117 | | fvex 6894 |
. . . . 5
⊢ (𝐹‘𝑘) ∈ V |
| 118 | 117 | snss 4766 |
. . . 4
⊢ ((𝐹‘𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) ↔ {(𝐹‘𝑘)} ⊆ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
| 119 | 116, 118 | sylibr 234 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ (𝐼 ∖ 𝑥))) → (𝐹‘𝑘) ∈ ((Cntz‘𝐺)‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
| 120 | 9, 25, 17, 50, 51, 3, 20, 21, 52, 10, 12, 53, 54, 55, 119 | gsumzaddlem 19907 |
. 2
⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
| 121 | 49, 120 | jca 511 |
1
⊢ (𝜑 → ((𝐹 ∘f + 𝐻) ∈ 𝑊 ∧ (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |