MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1dmALT Structured version   Visualization version   GIF version

Theorem s1dmALT 14659
Description: Alternate version of s1dm 14658, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
s1dmALT (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})

Proof of Theorem s1dmALT
StepHypRef Expression
1 s1val 14648 . . 3 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21dmeqd 5930 . 2 (𝐴𝑆 → dom ⟨“𝐴”⟩ = dom {⟨0, 𝐴⟩})
3 dmsnopg 6246 . 2 (𝐴𝑆 → dom {⟨0, 𝐴⟩} = {0})
42, 3eqtrd 2780 1 (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648  cop 4654  dom cdm 5700  0cc0 11186  ⟨“cs1 14645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-s1 14646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator