MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1dmALT Structured version   Visualization version   GIF version

Theorem s1dmALT 14630
Description: Alternate version of s1dm 14629, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
s1dmALT (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})

Proof of Theorem s1dmALT
StepHypRef Expression
1 s1val 14619 . . 3 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21dmeqd 5898 . 2 (𝐴𝑆 → dom ⟨“𝐴”⟩ = dom {⟨0, 𝐴⟩})
3 dmsnopg 6215 . 2 (𝐴𝑆 → dom {⟨0, 𝐴⟩} = {0})
42, 3eqtrd 2769 1 (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {csn 4608  cop 4614  dom cdm 5667  0cc0 11138  ⟨“cs1 14616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6495  df-fun 6544  df-fv 6550  df-s1 14617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator