![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1dmALT | Structured version Visualization version GIF version |
Description: Alternate version of s1dm 14649, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
s1dmALT | ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14639 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
2 | 1 | dmeqd 5920 | . 2 ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = dom {〈0, 𝐴〉}) |
3 | dmsnopg 6238 | . 2 ⊢ (𝐴 ∈ 𝑆 → dom {〈0, 𝐴〉} = {0}) | |
4 | 2, 3 | eqtrd 2776 | 1 ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 {csn 4632 〈cop 4638 dom cdm 5690 0cc0 11159 〈“cs1 14636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-iota 6519 df-fun 6568 df-fv 6574 df-s1 14637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |