MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1dmALT Structured version   Visualization version   GIF version

Theorem s1dmALT 14650
Description: Alternate version of s1dm 14649, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
s1dmALT (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})

Proof of Theorem s1dmALT
StepHypRef Expression
1 s1val 14639 . . 3 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21dmeqd 5920 . 2 (𝐴𝑆 → dom ⟨“𝐴”⟩ = dom {⟨0, 𝐴⟩})
3 dmsnopg 6238 . 2 (𝐴𝑆 → dom {⟨0, 𝐴⟩} = {0})
42, 3eqtrd 2776 1 (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2107  {csn 4632  cop 4638  dom cdm 5690  0cc0 11159  ⟨“cs1 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-iota 6519  df-fun 6568  df-fv 6574  df-s1 14637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator