![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1dmALT | Structured version Visualization version GIF version |
Description: Alternate version of s1dm 14658, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
s1dmALT | ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14648 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
2 | 1 | dmeqd 5930 | . 2 ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = dom {〈0, 𝐴〉}) |
3 | dmsnopg 6246 | . 2 ⊢ (𝐴 ∈ 𝑆 → dom {〈0, 𝐴〉} = {0}) | |
4 | 2, 3 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ 𝑆 → dom 〈“𝐴”〉 = {0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 dom cdm 5700 0cc0 11186 〈“cs1 14645 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-s1 14646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |