![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1dmALT | Structured version Visualization version GIF version |
Description: Alternate version of s1dm 14557, having a shorter proof, but requiring that 𝐴 is a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
s1dmALT | ⊢ (𝐴 ∈ 𝑆 → dom ⟨“𝐴”⟩ = {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14547 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩}) | |
2 | 1 | dmeqd 5905 | . 2 ⊢ (𝐴 ∈ 𝑆 → dom ⟨“𝐴”⟩ = dom {⟨0, 𝐴⟩}) |
3 | dmsnopg 6212 | . 2 ⊢ (𝐴 ∈ 𝑆 → dom {⟨0, 𝐴⟩} = {0}) | |
4 | 2, 3 | eqtrd 2772 | 1 ⊢ (𝐴 ∈ 𝑆 → dom ⟨“𝐴”⟩ = {0}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {csn 4628 ⟨cop 4634 dom cdm 5676 0cc0 11109 ⟨“cs1 14544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-s1 14545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |