| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1fv | Structured version Visualization version GIF version | ||
| Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1fv | ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14523 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | fveq1d 6828 | . 2 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = ({〈0, 𝐴〉}‘0)) |
| 3 | 0nn0 12417 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 4 | fvsng 7120 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → ({〈0, 𝐴〉}‘0) = 𝐴) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({〈0, 𝐴〉}‘0) = 𝐴) |
| 6 | 2, 5 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4579 〈cop 4585 ‘cfv 6486 0cc0 11028 ℕ0cn0 12402 〈“cs1 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-n0 12403 df-s1 14521 |
| This theorem is referenced by: lsws1 14536 eqs1 14537 wrdl1s1 14539 ccats1val2 14552 ccat1st1st 14553 ccat2s1p1 14554 ccat2s1p2 14555 cats1un 14645 revs1 14689 cats1fvn 14783 s2fv0 14812 efgsval2 19630 efgs1 19632 efgsp1 19634 efgsfo 19636 pgpfaclem1 19980 loopclwwlkn1b 30004 clwwlkn1loopb 30005 clwwlknon1 30059 0wlkons1 30083 1wlkdlem4 30102 wlk2v2elem2 30118 ccatws1f1o 32906 cycpmco2lem2 33082 fldext2chn 33694 constrextdg2 33715 signstf0 34535 signsvtn0 34537 signstfvneq0 34539 singoutnword 46864 |
| Copyright terms: Public domain | W3C validator |