| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1fv | Structured version Visualization version GIF version | ||
| Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1fv | ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14616 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | fveq1d 6878 | . 2 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = ({〈0, 𝐴〉}‘0)) |
| 3 | 0nn0 12516 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 4 | fvsng 7172 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → ({〈0, 𝐴〉}‘0) = 𝐴) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({〈0, 𝐴〉}‘0) = 𝐴) |
| 6 | 2, 5 | eqtrd 2770 | 1 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 ‘cfv 6531 0cc0 11129 ℕ0cn0 12501 〈“cs1 14613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-i2m1 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-n0 12502 df-s1 14614 |
| This theorem is referenced by: lsws1 14629 eqs1 14630 wrdl1s1 14632 ccats1val2 14645 ccat1st1st 14646 ccat2s1p1 14647 ccat2s1p2 14648 cats1un 14739 revs1 14783 cats1fvn 14877 s2fv0 14906 efgsval2 19714 efgs1 19716 efgsp1 19718 efgsfo 19720 pgpfaclem1 20064 loopclwwlkn1b 30023 clwwlkn1loopb 30024 clwwlknon1 30078 0wlkons1 30102 1wlkdlem4 30121 wlk2v2elem2 30137 ccatws1f1o 32927 cycpmco2lem2 33138 fldext2chn 33762 constrextdg2 33783 signstf0 34600 signsvtn0 34602 signstfvneq0 34604 singoutnword 46911 |
| Copyright terms: Public domain | W3C validator |