| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1fv | Structured version Visualization version GIF version | ||
| Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1fv | ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14503 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | fveq1d 6824 | . 2 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = ({〈0, 𝐴〉}‘0)) |
| 3 | 0nn0 12393 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 4 | fvsng 7114 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → ({〈0, 𝐴〉}‘0) = 𝐴) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({〈0, 𝐴〉}‘0) = 𝐴) |
| 6 | 2, 5 | eqtrd 2766 | 1 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 ‘cfv 6481 0cc0 11003 ℕ0cn0 12378 〈“cs1 14500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-n0 12379 df-s1 14501 |
| This theorem is referenced by: lsws1 14516 eqs1 14517 wrdl1s1 14519 ccats1val2 14532 ccat1st1st 14533 ccat2s1p1 14534 ccat2s1p2 14535 cats1un 14625 revs1 14669 cats1fvn 14762 s2fv0 14791 efgsval2 19643 efgs1 19645 efgsp1 19647 efgsfo 19649 pgpfaclem1 19993 loopclwwlkn1b 30017 clwwlkn1loopb 30018 clwwlknon1 30072 0wlkons1 30096 1wlkdlem4 30115 wlk2v2elem2 30131 ccatws1f1o 32927 cycpmco2lem2 33091 fldext2chn 33736 constrextdg2 33757 signstf0 34576 signsvtn0 34578 signstfvneq0 34580 |
| Copyright terms: Public domain | W3C validator |