MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1fv Structured version   Visualization version   GIF version

Theorem s1fv 13964
Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1fv (𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)

Proof of Theorem s1fv
StepHypRef Expression
1 s1val 13952 . . 3 (𝐴𝐵 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21fveq1d 6663 . 2 (𝐴𝐵 → (⟨“𝐴”⟩‘0) = ({⟨0, 𝐴⟩}‘0))
3 0nn0 11909 . . 3 0 ∈ ℕ0
4 fvsng 6933 . . 3 ((0 ∈ ℕ0𝐴𝐵) → ({⟨0, 𝐴⟩}‘0) = 𝐴)
53, 4mpan 689 . 2 (𝐴𝐵 → ({⟨0, 𝐴⟩}‘0) = 𝐴)
62, 5eqtrd 2859 1 (𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {csn 4550  cop 4556  cfv 6343  0cc0 10535  0cn0 11894  ⟨“cs1 13949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pr 5317  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-mulcl 10597  ax-i2m1 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-iota 6302  df-fun 6345  df-fv 6351  df-n0 11895  df-s1 13950
This theorem is referenced by:  lsws1  13965  eqs1  13966  wrdl1s1  13968  ccats1val2  13983  ccat1st1st  13984  ccat2s1p1  13985  ccat2s1p2  13986  ccat2s1p1OLD  13987  ccat2s1p2OLD  13988  cats1un  14083  revs1  14127  cats1fvn  14220  s2fv0  14249  efgsval2  18859  efgs1  18861  efgsp1  18863  efgsfo  18865  pgpfaclem1  19203  loopclwwlkn1b  27833  clwwlkn1loopb  27834  clwwlknon1  27888  0wlkons1  27912  1wlkdlem4  27931  wlk2v2elem2  27947  cycpmco2lem2  30804  signstf0  31898  signsvtn0  31900  signstfvneq0  31902
  Copyright terms: Public domain W3C validator