![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s1fv | Structured version Visualization version GIF version |
Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1fv | ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14646 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
2 | 1 | fveq1d 6922 | . 2 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = ({〈0, 𝐴〉}‘0)) |
3 | 0nn0 12568 | . . 3 ⊢ 0 ∈ ℕ0 | |
4 | fvsng 7214 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → ({〈0, 𝐴〉}‘0) = 𝐴) | |
5 | 3, 4 | mpan 689 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({〈0, 𝐴〉}‘0) = 𝐴) |
6 | 2, 5 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 ‘cfv 6573 0cc0 11184 ℕ0cn0 12553 〈“cs1 14643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-n0 12554 df-s1 14644 |
This theorem is referenced by: lsws1 14659 eqs1 14660 wrdl1s1 14662 ccats1val2 14675 ccat1st1st 14676 ccat2s1p1 14677 ccat2s1p2 14678 cats1un 14769 revs1 14813 cats1fvn 14907 s2fv0 14936 efgsval2 19775 efgs1 19777 efgsp1 19779 efgsfo 19781 pgpfaclem1 20125 loopclwwlkn1b 30074 clwwlkn1loopb 30075 clwwlknon1 30129 0wlkons1 30153 1wlkdlem4 30172 wlk2v2elem2 30188 ccatws1f1o 32918 cycpmco2lem2 33120 fldext2chn 33719 signstf0 34545 signsvtn0 34547 signstfvneq0 34549 singoutnword 46801 |
Copyright terms: Public domain | W3C validator |