MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1fv Structured version   Visualization version   GIF version

Theorem s1fv 14515
Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1fv (𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)

Proof of Theorem s1fv
StepHypRef Expression
1 s1val 14503 . . 3 (𝐴𝐵 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21fveq1d 6824 . 2 (𝐴𝐵 → (⟨“𝐴”⟩‘0) = ({⟨0, 𝐴⟩}‘0))
3 0nn0 12393 . . 3 0 ∈ ℕ0
4 fvsng 7114 . . 3 ((0 ∈ ℕ0𝐴𝐵) → ({⟨0, 𝐴⟩}‘0) = 𝐴)
53, 4mpan 690 . 2 (𝐴𝐵 → ({⟨0, 𝐴⟩}‘0) = 𝐴)
62, 5eqtrd 2766 1 (𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4576  cop 4582  cfv 6481  0cc0 11003  0cn0 12378  ⟨“cs1 14500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-mulcl 11065  ax-i2m1 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-n0 12379  df-s1 14501
This theorem is referenced by:  lsws1  14516  eqs1  14517  wrdl1s1  14519  ccats1val2  14532  ccat1st1st  14533  ccat2s1p1  14534  ccat2s1p2  14535  cats1un  14625  revs1  14669  cats1fvn  14762  s2fv0  14791  efgsval2  19643  efgs1  19645  efgsp1  19647  efgsfo  19649  pgpfaclem1  19993  loopclwwlkn1b  30017  clwwlkn1loopb  30018  clwwlknon1  30072  0wlkons1  30096  1wlkdlem4  30115  wlk2v2elem2  30131  ccatws1f1o  32927  cycpmco2lem2  33091  fldext2chn  33736  constrextdg2  33757  signstf0  34576  signsvtn0  34578  signstfvneq0  34580
  Copyright terms: Public domain W3C validator