| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s1fv | Structured version Visualization version GIF version | ||
| Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s1fv | ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1val 14563 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
| 2 | 1 | fveq1d 6860 | . 2 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = ({〈0, 𝐴〉}‘0)) |
| 3 | 0nn0 12457 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 4 | fvsng 7154 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → ({〈0, 𝐴〉}‘0) = 𝐴) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({〈0, 𝐴〉}‘0) = 𝐴) |
| 6 | 2, 5 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 ‘cfv 6511 0cc0 11068 ℕ0cn0 12442 〈“cs1 14560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-n0 12443 df-s1 14561 |
| This theorem is referenced by: lsws1 14576 eqs1 14577 wrdl1s1 14579 ccats1val2 14592 ccat1st1st 14593 ccat2s1p1 14594 ccat2s1p2 14595 cats1un 14686 revs1 14730 cats1fvn 14824 s2fv0 14853 efgsval2 19663 efgs1 19665 efgsp1 19667 efgsfo 19669 pgpfaclem1 20013 loopclwwlkn1b 29971 clwwlkn1loopb 29972 clwwlknon1 30026 0wlkons1 30050 1wlkdlem4 30069 wlk2v2elem2 30085 ccatws1f1o 32873 cycpmco2lem2 33084 fldext2chn 33718 constrextdg2 33739 signstf0 34559 signsvtn0 34561 signstfvneq0 34563 singoutnword 46880 |
| Copyright terms: Public domain | W3C validator |