MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1fv Structured version   Visualization version   GIF version

Theorem s1fv 14315
Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s1fv (𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)

Proof of Theorem s1fv
StepHypRef Expression
1 s1val 14303 . . 3 (𝐴𝐵 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21fveq1d 6776 . 2 (𝐴𝐵 → (⟨“𝐴”⟩‘0) = ({⟨0, 𝐴⟩}‘0))
3 0nn0 12248 . . 3 0 ∈ ℕ0
4 fvsng 7052 . . 3 ((0 ∈ ℕ0𝐴𝐵) → ({⟨0, 𝐴⟩}‘0) = 𝐴)
53, 4mpan 687 . 2 (𝐴𝐵 → ({⟨0, 𝐴⟩}‘0) = 𝐴)
62, 5eqtrd 2778 1 (𝐴𝐵 → (⟨“𝐴”⟩‘0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561  cop 4567  cfv 6433  0cc0 10871  0cn0 12233  ⟨“cs1 14300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-n0 12234  df-s1 14301
This theorem is referenced by:  lsws1  14316  eqs1  14317  wrdl1s1  14319  ccats1val2  14334  ccat1st1st  14335  ccat2s1p1  14336  ccat2s1p2  14337  ccat2s1p1OLD  14338  ccat2s1p2OLD  14339  cats1un  14434  revs1  14478  cats1fvn  14571  s2fv0  14600  efgsval2  19339  efgs1  19341  efgsp1  19343  efgsfo  19345  pgpfaclem1  19684  loopclwwlkn1b  28406  clwwlkn1loopb  28407  clwwlknon1  28461  0wlkons1  28485  1wlkdlem4  28504  wlk2v2elem2  28520  cycpmco2lem2  31394  signstf0  32547  signsvtn0  32549  signstfvneq0  32551  singoutnword  46517
  Copyright terms: Public domain W3C validator