Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s1fv | Structured version Visualization version GIF version |
Description: Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s1fv | ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1val 14314 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 〈“𝐴”〉 = {〈0, 𝐴〉}) | |
2 | 1 | fveq1d 6773 | . 2 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = ({〈0, 𝐴〉}‘0)) |
3 | 0nn0 12259 | . . 3 ⊢ 0 ∈ ℕ0 | |
4 | fvsng 7049 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵) → ({〈0, 𝐴〉}‘0) = 𝐴) | |
5 | 3, 4 | mpan 687 | . 2 ⊢ (𝐴 ∈ 𝐵 → ({〈0, 𝐴〉}‘0) = 𝐴) |
6 | 2, 5 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ 𝐵 → (〈“𝐴”〉‘0) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {csn 4567 〈cop 4573 ‘cfv 6432 0cc0 10882 ℕ0cn0 12244 〈“cs1 14311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-mulcl 10944 ax-i2m1 10950 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6390 df-fun 6434 df-fv 6440 df-n0 12245 df-s1 14312 |
This theorem is referenced by: lsws1 14327 eqs1 14328 wrdl1s1 14330 ccats1val2 14345 ccat1st1st 14346 ccat2s1p1 14347 ccat2s1p2 14348 ccat2s1p1OLD 14349 ccat2s1p2OLD 14350 cats1un 14445 revs1 14489 cats1fvn 14582 s2fv0 14611 efgsval2 19350 efgs1 19352 efgsp1 19354 efgsfo 19356 pgpfaclem1 19695 loopclwwlkn1b 28415 clwwlkn1loopb 28416 clwwlknon1 28470 0wlkons1 28494 1wlkdlem4 28513 wlk2v2elem2 28529 cycpmco2lem2 31403 signstf0 32556 signsvtn0 32558 signstfvneq0 32560 singoutnword 46496 |
Copyright terms: Public domain | W3C validator |