Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4 Structured version   Visualization version   GIF version

Theorem cdlemg4 36771
Description: TODO: FIX COMMENT. (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l = (le‘𝐾)
cdlemg4.a 𝐴 = (Atoms‘𝐾)
cdlemg4.h 𝐻 = (LHyp‘𝐾)
cdlemg4.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg4.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg4.j = (join‘𝐾)
cdlemg4b.v 𝑉 = (𝑅𝐺)
Assertion
Ref Expression
cdlemg4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = 𝑄)

Proof of Theorem cdlemg4
StepHypRef Expression
1 cdlemg4.l . . 3 = (le‘𝐾)
2 cdlemg4.a . . 3 𝐴 = (Atoms‘𝐾)
3 cdlemg4.h . . 3 𝐻 = (LHyp‘𝐾)
4 cdlemg4.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 cdlemg4.r . . 3 𝑅 = ((trL‘𝐾)‘𝑊)
6 cdlemg4.j . . 3 = (join‘𝐾)
7 cdlemg4b.v . . 3 𝑉 = (𝑅𝐺)
8 eqid 2778 . . 3 (meet‘𝐾) = (meet‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8cdlemg4g 36770 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = ((𝑄 𝑉)(meet‘𝐾)(𝑃 𝑄)))
10 simp1l 1211 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ HL)
11 simp21l 1346 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃𝐴)
12 simp22l 1348 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑄𝐴)
136, 2hlatjcom 35522 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
1410, 11, 12, 13syl3anc 1439 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑄) = (𝑄 𝑃))
1514oveq2d 6938 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑄 𝑉)(meet‘𝐾)(𝑃 𝑄)) = ((𝑄 𝑉)(meet‘𝐾)(𝑄 𝑃)))
16 simp1 1127 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 simp31 1223 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐺𝑇)
18 eqid 2778 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1918, 3, 4, 5trlcl 36318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
2016, 17, 19syl2anc 579 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑅𝐺) ∈ (Base‘𝐾))
217, 20syl5eqel 2863 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑉 ∈ (Base‘𝐾))
22 simp32 1224 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑄 (𝑃 𝑉))
23 simp21r 1347 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑃 𝑊)
24 simp21 1220 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
251, 6, 8, 2, 3, 4, 5trlval2 36317 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
2616, 17, 24, 25syl3anc 1439 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑅𝐺) = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
277, 26syl5eq 2826 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑉 = ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊))
2810hllatd 35518 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝐾 ∈ Lat)
291, 2, 3, 4ltrnel 36293 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
3016, 17, 24, 29syl3anc 1439 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝐺𝑃) ∈ 𝐴 ∧ ¬ (𝐺𝑃) 𝑊))
3130simpld 490 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐺𝑃) ∈ 𝐴)
3218, 6, 2hlatjcl 35521 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
3310, 11, 31, 32syl3anc 1439 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾))
34 simp1r 1212 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊𝐻)
3518, 3lhpbase 36152 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3634, 35syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑊 ∈ (Base‘𝐾))
3718, 1, 8latmle2 17463 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑃 (𝐺𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) 𝑊)
3828, 33, 36, 37syl3anc 1439 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 (𝐺𝑃))(meet‘𝐾)𝑊) 𝑊)
3927, 38eqbrtrd 4908 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑉 𝑊)
4018, 2atbase 35443 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4111, 40syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → 𝑃 ∈ (Base‘𝐾))
4218, 1lattr 17442 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 𝑉𝑉 𝑊) → 𝑃 𝑊))
4328, 41, 21, 36, 42syl13anc 1440 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑃 𝑉𝑉 𝑊) → 𝑃 𝑊))
4439, 43mpan2d 684 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 𝑉𝑃 𝑊))
4523, 44mtod 190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑃 𝑉)
4618, 1, 6, 2hlexch2 35537 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑉 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 𝑉) → (𝑃 (𝑄 𝑉) → 𝑄 (𝑃 𝑉)))
4710, 11, 12, 21, 45, 46syl131anc 1451 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝑃 (𝑄 𝑉) → 𝑄 (𝑃 𝑉)))
4822, 47mtod 190 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ¬ 𝑃 (𝑄 𝑉))
4918, 1, 6, 8, 22llnma1b 35940 . . 3 ((𝐾 ∈ HL ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑄𝐴𝑃𝐴) ∧ ¬ 𝑃 (𝑄 𝑉)) → ((𝑄 𝑉)(meet‘𝐾)(𝑄 𝑃)) = 𝑄)
5010, 21, 12, 11, 48, 49syl131anc 1451 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → ((𝑄 𝑉)(meet‘𝐾)(𝑄 𝑃)) = 𝑄)
519, 15, 503eqtrd 2818 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝐺𝑇 ∧ ¬ 𝑄 (𝑃 𝑉) ∧ (𝐹‘(𝐺𝑃)) = 𝑃)) → (𝐹‘(𝐺𝑄)) = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4886  cfv 6135  (class class class)co 6922  Basecbs 16255  lecple 16345  joincjn 17330  meetcmee 17331  Latclat 17431  Atomscatm 35417  HLchlt 35504  LHypclh 36138  LTrncltrn 36255  trLctrl 36312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-riotaBAD 35107
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-undef 7681  df-map 8142  df-proset 17314  df-poset 17332  df-plt 17344  df-lub 17360  df-glb 17361  df-join 17362  df-meet 17363  df-p0 17425  df-p1 17426  df-lat 17432  df-clat 17494  df-oposet 35330  df-ol 35332  df-oml 35333  df-covers 35420  df-ats 35421  df-atl 35452  df-cvlat 35476  df-hlat 35505  df-llines 35652  df-lplanes 35653  df-lvols 35654  df-lines 35655  df-psubsp 35657  df-pmap 35658  df-padd 35950  df-lhyp 36142  df-laut 36143  df-ldil 36258  df-ltrn 36259  df-trl 36313
This theorem is referenced by:  cdlemg6a  36772  cdlemg6b  36773  cdlemg6  36777
  Copyright terms: Public domain W3C validator