Proof of Theorem cdlemg4
Step | Hyp | Ref
| Expression |
1 | | cdlemg4.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
2 | | cdlemg4.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
3 | | cdlemg4.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
4 | | cdlemg4.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
5 | | cdlemg4.r |
. . 3
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
6 | | cdlemg4.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
7 | | cdlemg4b.v |
. . 3
⊢ 𝑉 = (𝑅‘𝐺) |
8 | | eqid 2738 |
. . 3
⊢
(meet‘𝐾) =
(meet‘𝐾) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | cdlemg4g 38557 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = ((𝑄 ∨ 𝑉)(meet‘𝐾)(𝑃 ∨ 𝑄))) |
10 | | simp1l 1195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝐾 ∈ HL) |
11 | | simp21l 1288 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑃 ∈ 𝐴) |
12 | | simp22l 1290 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑄 ∈ 𝐴) |
13 | 6, 2 | hlatjcom 37309 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
14 | 10, 11, 12, 13 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑃)) |
15 | 14 | oveq2d 7271 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝑄 ∨ 𝑉)(meet‘𝐾)(𝑃 ∨ 𝑄)) = ((𝑄 ∨ 𝑉)(meet‘𝐾)(𝑄 ∨ 𝑃))) |
16 | | simp1 1134 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
17 | | simp31 1207 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝐺 ∈ 𝑇) |
18 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | 18, 3, 4, 5 | trlcl 38105 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
20 | 16, 17, 19 | syl2anc 583 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑅‘𝐺) ∈ (Base‘𝐾)) |
21 | 7, 20 | eqeltrid 2843 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑉 ∈ (Base‘𝐾)) |
22 | | simp32 1208 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑉)) |
23 | | simp21r 1289 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ¬ 𝑃 ≤ 𝑊) |
24 | | simp21 1204 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
25 | 1, 6, 8, 2, 3, 4, 5 | trlval2 38104 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊)) |
26 | 16, 17, 24, 25 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑅‘𝐺) = ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊)) |
27 | 7, 26 | syl5eq 2791 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑉 = ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊)) |
28 | 10 | hllatd 37305 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝐾 ∈ Lat) |
29 | 1, 2, 3, 4 | ltrnel 38080 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
30 | 16, 17, 24, 29 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝐺‘𝑃) ∈ 𝐴 ∧ ¬ (𝐺‘𝑃) ≤ 𝑊)) |
31 | 30 | simpld 494 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐺‘𝑃) ∈ 𝐴) |
32 | 18, 6, 2 | hlatjcl 37308 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝐺‘𝑃) ∈ 𝐴) → (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) |
33 | 10, 11, 31, 32 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾)) |
34 | | simp1r 1196 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑊 ∈ 𝐻) |
35 | 18, 3 | lhpbase 37939 |
. . . . . . . . . 10
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
36 | 34, 35 | syl 17 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑊 ∈ (Base‘𝐾)) |
37 | 18, 1, 8 | latmle2 18098 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ (𝐺‘𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊) ≤ 𝑊) |
38 | 28, 33, 36, 37 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝑃 ∨ (𝐺‘𝑃))(meet‘𝐾)𝑊) ≤ 𝑊) |
39 | 27, 38 | eqbrtrd 5092 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑉 ≤ 𝑊) |
40 | 18, 2 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
41 | 11, 40 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → 𝑃 ∈ (Base‘𝐾)) |
42 | 18, 1 | lattr 18077 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ≤ 𝑉 ∧ 𝑉 ≤ 𝑊) → 𝑃 ≤ 𝑊)) |
43 | 28, 41, 21, 36, 42 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝑃 ≤ 𝑉 ∧ 𝑉 ≤ 𝑊) → 𝑃 ≤ 𝑊)) |
44 | 39, 43 | mpan2d 690 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ≤ 𝑉 → 𝑃 ≤ 𝑊)) |
45 | 23, 44 | mtod 197 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ¬ 𝑃 ≤ 𝑉) |
46 | 18, 1, 6, 2 | hlexch2 37324 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑉 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 ≤ 𝑉) → (𝑃 ≤ (𝑄 ∨ 𝑉) → 𝑄 ≤ (𝑃 ∨ 𝑉))) |
47 | 10, 11, 12, 21, 45, 46 | syl131anc 1381 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝑃 ≤ (𝑄 ∨ 𝑉) → 𝑄 ≤ (𝑃 ∨ 𝑉))) |
48 | 22, 47 | mtod 197 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ¬ 𝑃 ≤ (𝑄 ∨ 𝑉)) |
49 | 18, 1, 6, 8, 2 | 2llnma1b 37727 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ ¬ 𝑃 ≤ (𝑄 ∨ 𝑉)) → ((𝑄 ∨ 𝑉)(meet‘𝐾)(𝑄 ∨ 𝑃)) = 𝑄) |
50 | 10, 21, 12, 11, 48, 49 | syl131anc 1381 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → ((𝑄 ∨ 𝑉)(meet‘𝐾)(𝑄 ∨ 𝑃)) = 𝑄) |
51 | 9, 15, 50 | 3eqtrd 2782 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑉) ∧ (𝐹‘(𝐺‘𝑃)) = 𝑃)) → (𝐹‘(𝐺‘𝑄)) = 𝑄) |