Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33b0 Structured version   Visualization version   GIF version

Theorem cdlemg33b0 40739
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg33b0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣))))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟   𝑧,𝐴   𝑧,𝐹,𝑟   𝐻,𝑟,𝑧   𝑧,   𝐾,𝑟,𝑧   𝑧,   𝑁,𝑟,𝑧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,𝑊   𝑧,𝑣,𝑟
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣,𝑟)   𝑇(𝑣,𝑟)   𝐹(𝑣)   𝐻(𝑣)   (𝑣)   𝐾(𝑣)   (𝑣)   (𝑧,𝑣,𝑟)   𝑁(𝑣)   𝑊(𝑣)

Proof of Theorem cdlemg33b0
StepHypRef Expression
1 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁𝐴)
5 simp21l 1291 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣𝐴)
6 simp21r 1292 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 𝑊)
75, 6jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑣 𝑊))
8 simp23 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
9 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ≠ (𝑅𝐹))
10 cdlemg12.l . . . . . 6 = (le‘𝐾)
11 cdlemg12.j . . . . . 6 = (join‘𝐾)
12 cdlemg12.m . . . . . 6 = (meet‘𝐾)
13 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
14 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
15 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemg31.n . . . . . 6 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
1810, 11, 12, 13, 14, 15, 16, 17cdlemg31d 40738 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → ¬ 𝑁 𝑊)
191, 2, 3, 7, 8, 9, 4, 18syl133anc 1395 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑁 𝑊)
204, 19jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁𝐴 ∧ ¬ 𝑁 𝑊))
21 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
22 nbrne2 5111 . . . . . 6 ((𝑣 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑣𝑁)
2322necomd 2983 . . . . 5 ((𝑣 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑁𝑣)
246, 19, 23syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁𝑣)
255, 24jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑁𝑣))
26 simp33 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
2710, 11, 13, 144atex3 40119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑁𝐴 ∧ ¬ 𝑁 𝑊)) ∧ (𝑃𝑄 ∧ (𝑣𝐴𝑁𝑣) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))))
281, 2, 3, 20, 21, 25, 26, 27syl133anc 1395 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))))
29 df-3an 1088 . . . . 5 ((𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣)) ↔ ((𝑧𝑁𝑧𝑣) ∧ 𝑧 (𝑁 𝑣)))
30 simpl 482 . . . . . . 7 ((𝑧𝑁𝑧𝑣) → 𝑧𝑁)
3130a1i 11 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧𝑁𝑧𝑣) → 𝑧𝑁))
32 simp12l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
33 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
3410, 11, 12, 13, 14, 15, 16, 17cdlemg31a 40735 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
351, 32, 33, 5, 8, 34syl122anc 1381 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁 (𝑃 𝑣))
36 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
3710, 11, 13hlatlej2 39414 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → 𝑣 (𝑃 𝑣))
3836, 32, 5, 37syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 (𝑃 𝑣))
3936hllatd 39402 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ Lat)
40 eqid 2731 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
4140, 13atbase 39327 . . . . . . . . . . 11 (𝑁𝐴𝑁 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁 ∈ (Base‘𝐾))
4340, 13atbase 39327 . . . . . . . . . . 11 (𝑣𝐴𝑣 ∈ (Base‘𝐾))
445, 43syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ∈ (Base‘𝐾))
4540, 11, 13hlatjcl 39405 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
4636, 32, 5, 45syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 𝑣) ∈ (Base‘𝐾))
4740, 10, 11latjle12 18353 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑁 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑁 (𝑃 𝑣) ∧ 𝑣 (𝑃 𝑣)) ↔ (𝑁 𝑣) (𝑃 𝑣)))
4839, 42, 44, 46, 47syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁 (𝑃 𝑣) ∧ 𝑣 (𝑃 𝑣)) ↔ (𝑁 𝑣) (𝑃 𝑣)))
4935, 38, 48mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁 𝑣) (𝑃 𝑣))
5049adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑁 𝑣) (𝑃 𝑣))
5139adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → 𝐾 ∈ Lat)
5240, 13atbase 39327 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
5352adantl 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → 𝑧 ∈ (Base‘𝐾))
5440, 11, 13hlatjcl 39405 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑁𝐴𝑣𝐴) → (𝑁 𝑣) ∈ (Base‘𝐾))
5536, 4, 5, 54syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁 𝑣) ∈ (Base‘𝐾))
5655adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑁 𝑣) ∈ (Base‘𝐾))
5746adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
5840, 10lattr 18347 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ (𝑁 𝑣) ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑧 (𝑁 𝑣) ∧ (𝑁 𝑣) (𝑃 𝑣)) → 𝑧 (𝑃 𝑣)))
5951, 53, 56, 57, 58syl13anc 1374 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧 (𝑁 𝑣) ∧ (𝑁 𝑣) (𝑃 𝑣)) → 𝑧 (𝑃 𝑣)))
6050, 59mpan2d 694 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑧 (𝑁 𝑣) → 𝑧 (𝑃 𝑣)))
6131, 60anim12d 609 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (((𝑧𝑁𝑧𝑣) ∧ 𝑧 (𝑁 𝑣)) → (𝑧𝑁𝑧 (𝑃 𝑣))))
6229, 61biimtrid 242 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣)) → (𝑧𝑁𝑧 (𝑃 𝑣))))
6362anim2d 612 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((¬ 𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))) → (¬ 𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣)))))
6463reximdva 3145 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣)))))
6528, 64mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17117  lecple 17165  joincjn 18214  meetcmee 18215  Latclat 18334  Atomscatm 39301  HLchlt 39388  LHypclh 40022  LTrncltrn 40139  trLctrl 40196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197
This theorem is referenced by:  cdlemg33b  40745  cdlemg33c  40746
  Copyright terms: Public domain W3C validator