Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33b0 Structured version   Visualization version   GIF version

Theorem cdlemg33b0 36509
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg33b0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣))))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟   𝑧,𝐴   𝑧,𝐹,𝑟   𝐻,𝑟,𝑧   𝑧,   𝐾,𝑟,𝑧   𝑧,   𝑁,𝑟,𝑧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,𝑊   𝑧,𝑣,𝑟
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣,𝑟)   𝑇(𝑣,𝑟)   𝐹(𝑣)   𝐻(𝑣)   (𝑣)   𝐾(𝑣)   (𝑣)   (𝑧,𝑣,𝑟)   𝑁(𝑣)   𝑊(𝑣)

Proof of Theorem cdlemg33b0
StepHypRef Expression
1 simp11 1245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp22 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁𝐴)
5 simp21l 1374 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣𝐴)
6 simp21r 1375 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 𝑊)
75, 6jca 501 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑣 𝑊))
8 simp23 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
9 simp32 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ≠ (𝑅𝐹))
10 cdlemg12.l . . . . . 6 = (le‘𝐾)
11 cdlemg12.j . . . . . 6 = (join‘𝐾)
12 cdlemg12.m . . . . . 6 = (meet‘𝐾)
13 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
14 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
15 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemg31.n . . . . . 6 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
1810, 11, 12, 13, 14, 15, 16, 17cdlemg31d 36508 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → ¬ 𝑁 𝑊)
191, 2, 3, 7, 8, 9, 4, 18syl133anc 1499 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑁 𝑊)
204, 19jca 501 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁𝐴 ∧ ¬ 𝑁 𝑊))
21 simp31 1251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
22 nbrne2 4807 . . . . . 6 ((𝑣 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑣𝑁)
2322necomd 2998 . . . . 5 ((𝑣 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑁𝑣)
246, 19, 23syl2anc 573 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁𝑣)
255, 24jca 501 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑁𝑣))
26 simp33 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
2710, 11, 13, 144atex3 35888 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑁𝐴 ∧ ¬ 𝑁 𝑊)) ∧ (𝑃𝑄 ∧ (𝑣𝐴𝑁𝑣) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))))
281, 2, 3, 20, 21, 25, 26, 27syl133anc 1499 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))))
29 df-3an 1073 . . . . 5 ((𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣)) ↔ ((𝑧𝑁𝑧𝑣) ∧ 𝑧 (𝑁 𝑣)))
30 simpl 468 . . . . . . 7 ((𝑧𝑁𝑧𝑣) → 𝑧𝑁)
3130a1i 11 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧𝑁𝑧𝑣) → 𝑧𝑁))
32 simp12l 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
33 simp13l 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
3410, 11, 12, 13, 14, 15, 16, 17cdlemg31a 36505 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
351, 32, 33, 5, 8, 34syl122anc 1485 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁 (𝑃 𝑣))
36 simp11l 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
3710, 11, 13hlatlej2 35183 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → 𝑣 (𝑃 𝑣))
3836, 32, 5, 37syl3anc 1476 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 (𝑃 𝑣))
3936hllatd 35171 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ Lat)
40 eqid 2771 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
4140, 13atbase 35096 . . . . . . . . . . 11 (𝑁𝐴𝑁 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁 ∈ (Base‘𝐾))
4340, 13atbase 35096 . . . . . . . . . . 11 (𝑣𝐴𝑣 ∈ (Base‘𝐾))
445, 43syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ∈ (Base‘𝐾))
4540, 11, 13hlatjcl 35174 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
4636, 32, 5, 45syl3anc 1476 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 𝑣) ∈ (Base‘𝐾))
4740, 10, 11latjle12 17270 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑁 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑁 (𝑃 𝑣) ∧ 𝑣 (𝑃 𝑣)) ↔ (𝑁 𝑣) (𝑃 𝑣)))
4839, 42, 44, 46, 47syl13anc 1478 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁 (𝑃 𝑣) ∧ 𝑣 (𝑃 𝑣)) ↔ (𝑁 𝑣) (𝑃 𝑣)))
4935, 38, 48mpbi2and 691 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁 𝑣) (𝑃 𝑣))
5049adantr 466 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑁 𝑣) (𝑃 𝑣))
5139adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → 𝐾 ∈ Lat)
5240, 13atbase 35096 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
5352adantl 467 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → 𝑧 ∈ (Base‘𝐾))
5440, 11, 13hlatjcl 35174 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑁𝐴𝑣𝐴) → (𝑁 𝑣) ∈ (Base‘𝐾))
5536, 4, 5, 54syl3anc 1476 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁 𝑣) ∈ (Base‘𝐾))
5655adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑁 𝑣) ∈ (Base‘𝐾))
5746adantr 466 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
5840, 10lattr 17264 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ (𝑁 𝑣) ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑧 (𝑁 𝑣) ∧ (𝑁 𝑣) (𝑃 𝑣)) → 𝑧 (𝑃 𝑣)))
5951, 53, 56, 57, 58syl13anc 1478 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧 (𝑁 𝑣) ∧ (𝑁 𝑣) (𝑃 𝑣)) → 𝑧 (𝑃 𝑣)))
6050, 59mpan2d 674 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑧 (𝑁 𝑣) → 𝑧 (𝑃 𝑣)))
6131, 60anim12d 596 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (((𝑧𝑁𝑧𝑣) ∧ 𝑧 (𝑁 𝑣)) → (𝑧𝑁𝑧 (𝑃 𝑣))))
6229, 61syl5bi 232 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣)) → (𝑧𝑁𝑧 (𝑃 𝑣))))
6362anim2d 599 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((¬ 𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))) → (¬ 𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣)))))
6463reximdva 3165 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣)))))
6528, 64mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  joincjn 17152  meetcmee 17153  Latclat 17253  Atomscatm 35070  HLchlt 35157  LHypclh 35791  LTrncltrn 35908  trLctrl 35966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-map 8015  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34983  df-ol 34985  df-oml 34986  df-covers 35073  df-ats 35074  df-atl 35105  df-cvlat 35129  df-hlat 35158  df-llines 35305  df-lplanes 35306  df-psubsp 35310  df-pmap 35311  df-padd 35603  df-lhyp 35795  df-laut 35796  df-ldil 35911  df-ltrn 35912  df-trl 35967
This theorem is referenced by:  cdlemg33b  36515  cdlemg33c  36516
  Copyright terms: Public domain W3C validator