Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33b0 Structured version   Visualization version   GIF version

Theorem cdlemg33b0 40695
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg31.n 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
Assertion
Ref Expression
cdlemg33b0 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣))))
Distinct variable groups:   𝐴,𝑟   ,𝑟   ,𝑟   𝑃,𝑟   𝑄,𝑟   𝑊,𝑟   𝐹,𝑟   𝑧,𝐴   𝑧,𝐹,𝑟   𝐻,𝑟,𝑧   𝑧,   𝐾,𝑟,𝑧   𝑧,   𝑁,𝑟,𝑧   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑇   𝑧,𝑊   𝑧,𝑣,𝑟
Allowed substitution hints:   𝐴(𝑣)   𝑃(𝑣)   𝑄(𝑣)   𝑅(𝑣,𝑟)   𝑇(𝑣,𝑟)   𝐹(𝑣)   𝐻(𝑣)   (𝑣)   𝐾(𝑣)   (𝑣)   (𝑧,𝑣,𝑟)   𝑁(𝑣)   𝑊(𝑣)

Proof of Theorem cdlemg33b0
StepHypRef Expression
1 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp22 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁𝐴)
5 simp21l 1291 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣𝐴)
6 simp21r 1292 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 𝑊)
75, 6jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑣 𝑊))
8 simp23 1209 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐹𝑇)
9 simp32 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ≠ (𝑅𝐹))
10 cdlemg12.l . . . . . 6 = (le‘𝐾)
11 cdlemg12.j . . . . . 6 = (join‘𝐾)
12 cdlemg12.m . . . . . 6 = (meet‘𝐾)
13 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
14 cdlemg12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
15 cdlemg12.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
16 cdlemg12b.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
17 cdlemg31.n . . . . . 6 𝑁 = ((𝑃 𝑣) (𝑄 (𝑅𝐹)))
1810, 11, 12, 13, 14, 15, 16, 17cdlemg31d 40694 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝐹𝑇𝑣 ≠ (𝑅𝐹) ∧ 𝑁𝐴)) → ¬ 𝑁 𝑊)
191, 2, 3, 7, 8, 9, 4, 18syl133anc 1395 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ¬ 𝑁 𝑊)
204, 19jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁𝐴 ∧ ¬ 𝑁 𝑊))
21 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝑄)
22 nbrne2 5127 . . . . . 6 ((𝑣 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑣𝑁)
2322necomd 2980 . . . . 5 ((𝑣 𝑊 ∧ ¬ 𝑁 𝑊) → 𝑁𝑣)
246, 19, 23syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁𝑣)
255, 24jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑣𝐴𝑁𝑣))
26 simp33 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))
2710, 11, 13, 144atex3 40075 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑁𝐴 ∧ ¬ 𝑁 𝑊)) ∧ (𝑃𝑄 ∧ (𝑣𝐴𝑁𝑣) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))))
281, 2, 3, 20, 21, 25, 26, 27syl133anc 1395 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))))
29 df-3an 1088 . . . . 5 ((𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣)) ↔ ((𝑧𝑁𝑧𝑣) ∧ 𝑧 (𝑁 𝑣)))
30 simpl 482 . . . . . . 7 ((𝑧𝑁𝑧𝑣) → 𝑧𝑁)
3130a1i 11 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧𝑁𝑧𝑣) → 𝑧𝑁))
32 simp12l 1287 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑃𝐴)
33 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑄𝐴)
3410, 11, 12, 13, 14, 15, 16, 17cdlemg31a 40691 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑣𝐴𝐹𝑇)) → 𝑁 (𝑃 𝑣))
351, 32, 33, 5, 8, 34syl122anc 1381 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁 (𝑃 𝑣))
36 simp11l 1285 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ HL)
3710, 11, 13hlatlej2 39369 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → 𝑣 (𝑃 𝑣))
3836, 32, 5, 37syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 (𝑃 𝑣))
3936hllatd 39357 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝐾 ∈ Lat)
40 eqid 2729 . . . . . . . . . . . 12 (Base‘𝐾) = (Base‘𝐾)
4140, 13atbase 39282 . . . . . . . . . . 11 (𝑁𝐴𝑁 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑁 ∈ (Base‘𝐾))
4340, 13atbase 39282 . . . . . . . . . . 11 (𝑣𝐴𝑣 ∈ (Base‘𝐾))
445, 43syl 17 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → 𝑣 ∈ (Base‘𝐾))
4540, 11, 13hlatjcl 39360 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
4636, 32, 5, 45syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑃 𝑣) ∈ (Base‘𝐾))
4740, 10, 11latjle12 18409 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑁 ∈ (Base‘𝐾) ∧ 𝑣 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑁 (𝑃 𝑣) ∧ 𝑣 (𝑃 𝑣)) ↔ (𝑁 𝑣) (𝑃 𝑣)))
4839, 42, 44, 46, 47syl13anc 1374 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ((𝑁 (𝑃 𝑣) ∧ 𝑣 (𝑃 𝑣)) ↔ (𝑁 𝑣) (𝑃 𝑣)))
4935, 38, 48mpbi2and 712 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁 𝑣) (𝑃 𝑣))
5049adantr 480 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑁 𝑣) (𝑃 𝑣))
5139adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → 𝐾 ∈ Lat)
5240, 13atbase 39282 . . . . . . . . 9 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
5352adantl 481 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → 𝑧 ∈ (Base‘𝐾))
5440, 11, 13hlatjcl 39360 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑁𝐴𝑣𝐴) → (𝑁 𝑣) ∈ (Base‘𝐾))
5536, 4, 5, 54syl3anc 1373 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (𝑁 𝑣) ∈ (Base‘𝐾))
5655adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑁 𝑣) ∈ (Base‘𝐾))
5746adantr 480 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
5840, 10lattr 18403 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑧 ∈ (Base‘𝐾) ∧ (𝑁 𝑣) ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑧 (𝑁 𝑣) ∧ (𝑁 𝑣) (𝑃 𝑣)) → 𝑧 (𝑃 𝑣)))
5951, 53, 56, 57, 58syl13anc 1374 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧 (𝑁 𝑣) ∧ (𝑁 𝑣) (𝑃 𝑣)) → 𝑧 (𝑃 𝑣)))
6050, 59mpan2d 694 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (𝑧 (𝑁 𝑣) → 𝑧 (𝑃 𝑣)))
6131, 60anim12d 609 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → (((𝑧𝑁𝑧𝑣) ∧ 𝑧 (𝑁 𝑣)) → (𝑧𝑁𝑧 (𝑃 𝑣))))
6229, 61biimtrid 242 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣)) → (𝑧𝑁𝑧 (𝑃 𝑣))))
6362anim2d 612 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) ∧ 𝑧𝐴) → ((¬ 𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))) → (¬ 𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣)))))
6463reximdva 3146 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → (∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧𝑣𝑧 (𝑁 𝑣))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣)))))
6528, 64mpd 15 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑣𝐴𝑣 𝑊) ∧ 𝑁𝐴𝐹𝑇) ∧ (𝑃𝑄𝑣 ≠ (𝑅𝐹) ∧ ∃𝑟𝐴𝑟 𝑊 ∧ (𝑃 𝑟) = (𝑄 𝑟)))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑧𝑁𝑧 (𝑃 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  trLctrl 40152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  cdlemg33b  40701  cdlemg33c  40702
  Copyright terms: Public domain W3C validator