Proof of Theorem cdleme22aa
Step | Hyp | Ref
| Expression |
1 | | simp33 1210 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ≤ (𝑃 ∨ 𝑄)) |
2 | | simp32 1209 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ≤ 𝑊) |
3 | | simp1l 1196 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ HL) |
4 | 3 | hllatd 37378 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ Lat) |
5 | | simp31 1208 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ∈ 𝐴) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | cdleme22.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 6, 7 | atbase 37303 |
. . . . . 6
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
9 | 5, 8 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ∈ (Base‘𝐾)) |
10 | | simp21l 1289 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ∈ 𝐴) |
11 | | simp22 1206 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑄 ∈ 𝐴) |
12 | | cdleme22.j |
. . . . . . 7
⊢ ∨ =
(join‘𝐾) |
13 | 6, 12, 7 | hlatjcl 37381 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
14 | 3, 10, 11, 13 | syl3anc 1370 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
15 | | simp1r 1197 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ 𝐻) |
16 | | cdleme22.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
17 | 6, 16 | lhpbase 38012 |
. . . . . 6
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
18 | 15, 17 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑊 ∈ (Base‘𝐾)) |
19 | | cdleme22.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
20 | | cdleme22.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
21 | 6, 19, 20 | latlem12 18184 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 ≤ (𝑃 ∨ 𝑄) ∧ 𝑉 ≤ 𝑊) ↔ 𝑉 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
22 | 4, 9, 14, 18, 21 | syl13anc 1371 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → ((𝑉 ≤ (𝑃 ∨ 𝑄) ∧ 𝑉 ≤ 𝑊) ↔ 𝑉 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊))) |
23 | 1, 2, 22 | mpbi2and 709 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ≤ ((𝑃 ∨ 𝑄) ∧ 𝑊)) |
24 | | cdleme22.u |
. . 3
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
25 | 23, 24 | breqtrrdi 5116 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ≤ 𝑈) |
26 | | hlatl 37374 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
27 | 3, 26 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝐾 ∈ AtLat) |
28 | | simp21r 1290 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑃 ≤ 𝑊) |
29 | | simp23 1207 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑄) |
30 | 19, 12, 20, 7, 16, 24 | cdleme0a 38225 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
31 | 3, 15, 10, 28, 11, 29, 30 | syl222anc 1385 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑈 ∈ 𝐴) |
32 | 19, 7 | atcmp 37325 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑉 ≤ 𝑈 ↔ 𝑉 = 𝑈)) |
33 | 27, 5, 31, 32 | syl3anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → (𝑉 ≤ 𝑈 ↔ 𝑉 = 𝑈)) |
34 | 25, 33 | mpbid 231 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ∧ 𝑉 ≤ (𝑃 ∨ 𝑄))) → 𝑉 = 𝑈) |