Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22aa Structured version   Visualization version   GIF version

Theorem cdleme22aa 39867
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 3rd line on p. 115. Show that t v = p q implies v = u. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l = (le‘𝐾)
cdleme22.j = (join‘𝐾)
cdleme22.m = (meet‘𝐾)
cdleme22.a 𝐴 = (Atoms‘𝐾)
cdleme22.h 𝐻 = (LHyp‘𝐾)
cdleme22.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme22aa (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 = 𝑈)

Proof of Theorem cdleme22aa
StepHypRef Expression
1 simp33 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 (𝑃 𝑄))
2 simp32 1207 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 𝑊)
3 simp1l 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝐾 ∈ HL)
43hllatd 38891 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝐾 ∈ Lat)
5 simp31 1206 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉𝐴)
6 eqid 2725 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
7 cdleme22.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
86, 7atbase 38816 . . . . . 6 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
95, 8syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 ∈ (Base‘𝐾))
10 simp21l 1287 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑃𝐴)
11 simp22 1204 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑄𝐴)
12 cdleme22.j . . . . . . 7 = (join‘𝐾)
136, 12, 7hlatjcl 38894 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
143, 10, 11, 13syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
15 simp1r 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑊𝐻)
16 cdleme22.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
176, 16lhpbase 39526 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1815, 17syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
19 cdleme22.l . . . . . 6 = (le‘𝐾)
20 cdleme22.m . . . . . 6 = (meet‘𝐾)
216, 19, 20latlem12 18455 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 (𝑃 𝑄) ∧ 𝑉 𝑊) ↔ 𝑉 ((𝑃 𝑄) 𝑊)))
224, 9, 14, 18, 21syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → ((𝑉 (𝑃 𝑄) ∧ 𝑉 𝑊) ↔ 𝑉 ((𝑃 𝑄) 𝑊)))
231, 2, 22mpbi2and 710 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 ((𝑃 𝑄) 𝑊))
24 cdleme22.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
2523, 24breqtrrdi 5185 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 𝑈)
26 hlatl 38887 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
273, 26syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝐾 ∈ AtLat)
28 simp21r 1288 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → ¬ 𝑃 𝑊)
29 simp23 1205 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑃𝑄)
3019, 12, 20, 7, 16, 24cdleme0a 39739 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
313, 15, 10, 28, 11, 29, 30syl222anc 1383 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑈𝐴)
3219, 7atcmp 38838 . . 3 ((𝐾 ∈ AtLat ∧ 𝑉𝐴𝑈𝐴) → (𝑉 𝑈𝑉 = 𝑈))
3327, 5, 31, 32syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → (𝑉 𝑈𝑉 = 𝑈))
3425, 33mpbid 231 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴𝑉 𝑊𝑉 (𝑃 𝑄))) → 𝑉 = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2930   class class class wbr 5143  cfv 6542  (class class class)co 7415  Basecbs 17177  lecple 17237  joincjn 18300  meetcmee 18301  Latclat 18420  Atomscatm 38790  AtLatcal 38791  HLchlt 38877  LHypclh 39512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-proset 18284  df-poset 18302  df-plt 18319  df-lub 18335  df-glb 18336  df-join 18337  df-meet 18338  df-p0 18414  df-p1 18415  df-lat 18421  df-clat 18488  df-oposet 38703  df-ol 38705  df-oml 38706  df-covers 38793  df-ats 38794  df-atl 38825  df-cvlat 38849  df-hlat 38878  df-lhyp 39516
This theorem is referenced by:  cdleme22a  39868  cdleme22cN  39870  cdleme22f  39874
  Copyright terms: Public domain W3C validator