Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17d1 Structured version   Visualization version   GIF version

Theorem cdleme17d1 36099
Description: Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l = (le‘𝐾)
cdleme17.j = (join‘𝐾)
cdleme17.m = (meet‘𝐾)
cdleme17.a 𝐴 = (Atoms‘𝐾)
cdleme17.h 𝐻 = (LHyp‘𝐾)
cdleme17.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme17.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme17.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme17d1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)

Proof of Theorem cdleme17d1
StepHypRef Expression
1 cdleme17.l . . 3 = (le‘𝐾)
2 cdleme17.j . . 3 = (join‘𝐾)
3 cdleme17.m . . 3 = (meet‘𝐾)
4 cdleme17.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdleme17.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdleme17.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme17.f . . 3 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme17.g . . 3 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
9 eqid 2771 . . 3 ((𝑃 𝑆) 𝑊) = ((𝑃 𝑆) 𝑊)
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme17a 36096 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))))
11 simp1l 1239 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ HL)
12 simp1r 1240 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊𝐻)
13 simp21l 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝐴)
14 simp21r 1375 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑃 𝑊)
15 simp22 1249 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄𝐴)
16 simp23l 1378 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
17 simp3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
181, 2, 3, 4, 5, 6, 7, 8, 9cdleme17c 36098 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))) = 𝑄)
1911, 12, 13, 14, 15, 16, 17, 18syl223anc 1502 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))) = 𝑄)
2010, 19eqtrd 2805 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4787  cfv 6032  (class class class)co 6794  lecple 16157  joincjn 17153  meetcmee 17154  Atomscatm 35073  HLchlt 35160  LHypclh 35793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-1st 7316  df-2nd 7317  df-preset 17137  df-poset 17155  df-plt 17167  df-lub 17183  df-glb 17184  df-join 17185  df-meet 17186  df-p0 17248  df-p1 17249  df-lat 17255  df-clat 17317  df-oposet 34986  df-ol 34988  df-oml 34989  df-covers 35076  df-ats 35077  df-atl 35108  df-cvlat 35132  df-hlat 35161  df-psubsp 35312  df-pmap 35313  df-padd 35605  df-lhyp 35797
This theorem is referenced by:  cdleme18d  36105  cdleme17d2  36305
  Copyright terms: Public domain W3C validator