Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17d1 Structured version   Visualization version   GIF version

Theorem cdleme17d1 37293
Description: Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l = (le‘𝐾)
cdleme17.j = (join‘𝐾)
cdleme17.m = (meet‘𝐾)
cdleme17.a 𝐴 = (Atoms‘𝐾)
cdleme17.h 𝐻 = (LHyp‘𝐾)
cdleme17.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme17.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme17.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme17d1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)

Proof of Theorem cdleme17d1
StepHypRef Expression
1 cdleme17.l . . 3 = (le‘𝐾)
2 cdleme17.j . . 3 = (join‘𝐾)
3 cdleme17.m . . 3 = (meet‘𝐾)
4 cdleme17.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdleme17.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdleme17.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme17.f . . 3 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme17.g . . 3 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
9 eqid 2824 . . 3 ((𝑃 𝑆) 𝑊) = ((𝑃 𝑆) 𝑊)
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme17a 37290 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))))
11 simp1l 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ HL)
12 simp1r 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊𝐻)
13 simp21l 1284 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝐴)
14 simp21r 1285 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑃 𝑊)
15 simp22 1201 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄𝐴)
16 simp23l 1288 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
17 simp3 1132 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
181, 2, 3, 4, 5, 6, 7, 8, 9cdleme17c 37292 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))) = 𝑄)
1911, 12, 13, 14, 15, 16, 17, 18syl223anc 1390 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))) = 𝑄)
2010, 19eqtrd 2860 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2106   class class class wbr 5062  cfv 6351  (class class class)co 7151  lecple 16564  joincjn 17546  meetcmee 17547  Atomscatm 36267  HLchlt 36354  LHypclh 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7683  df-2nd 7684  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36180  df-ol 36182  df-oml 36183  df-covers 36270  df-ats 36271  df-atl 36302  df-cvlat 36326  df-hlat 36355  df-psubsp 36507  df-pmap 36508  df-padd 36800  df-lhyp 36992
This theorem is referenced by:  cdleme18d  37299  cdleme17d2  37499
  Copyright terms: Public domain W3C validator