Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme17d1 Structured version   Visualization version   GIF version

Theorem cdleme17d1 36448
Description: Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. (Contributed by NM, 11-Oct-2012.)
Hypotheses
Ref Expression
cdleme17.l = (le‘𝐾)
cdleme17.j = (join‘𝐾)
cdleme17.m = (meet‘𝐾)
cdleme17.a 𝐴 = (Atoms‘𝐾)
cdleme17.h 𝐻 = (LHyp‘𝐾)
cdleme17.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme17.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme17.g 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme17d1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)

Proof of Theorem cdleme17d1
StepHypRef Expression
1 cdleme17.l . . 3 = (le‘𝐾)
2 cdleme17.j . . 3 = (join‘𝐾)
3 cdleme17.m . . 3 = (meet‘𝐾)
4 cdleme17.a . . 3 𝐴 = (Atoms‘𝐾)
5 cdleme17.h . . 3 𝐻 = (LHyp‘𝐾)
6 cdleme17.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
7 cdleme17.f . . 3 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
8 cdleme17.g . . 3 𝐺 = ((𝑃 𝑄) (𝐹 ((𝑃 𝑆) 𝑊)))
9 eqid 2778 . . 3 ((𝑃 𝑆) 𝑊) = ((𝑃 𝑆) 𝑊)
101, 2, 3, 4, 5, 6, 7, 8, 9cdleme17a 36445 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))))
11 simp1l 1211 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐾 ∈ HL)
12 simp1r 1212 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑊𝐻)
13 simp21l 1346 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑃𝐴)
14 simp21r 1347 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑃 𝑊)
15 simp22 1221 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑄𝐴)
16 simp23l 1350 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝑆𝐴)
17 simp3 1129 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ¬ 𝑆 (𝑃 𝑄))
181, 2, 3, 4, 5, 6, 7, 8, 9cdleme17c 36447 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))) = 𝑄)
1911, 12, 13, 14, 15, 16, 17, 18syl223anc 1464 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝑃 𝑄) (𝑄 ((𝑃 𝑆) 𝑊))) = 𝑄)
2010, 19eqtrd 2814 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → 𝐺 = 𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107   class class class wbr 4888  cfv 6137  (class class class)co 6924  lecple 16349  joincjn 17334  meetcmee 17335  Atomscatm 35422  HLchlt 35509  LHypclh 36143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-proset 17318  df-poset 17336  df-plt 17348  df-lub 17364  df-glb 17365  df-join 17366  df-meet 17367  df-p0 17429  df-p1 17430  df-lat 17436  df-clat 17498  df-oposet 35335  df-ol 35337  df-oml 35338  df-covers 35425  df-ats 35426  df-atl 35457  df-cvlat 35481  df-hlat 35510  df-psubsp 35662  df-pmap 35663  df-padd 35955  df-lhyp 36147
This theorem is referenced by:  cdleme18d  36454  cdleme17d2  36654
  Copyright terms: Public domain W3C validator