Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22d Structured version   Visualization version   GIF version

Theorem cdleme22d 39670
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 9th line on p. 115. (Contributed by NM, 4-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l ≀ = (leβ€˜πΎ)
cdleme22.j ∨ = (joinβ€˜πΎ)
cdleme22.m ∧ = (meetβ€˜πΎ)
cdleme22.a 𝐴 = (Atomsβ€˜πΎ)
cdleme22.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
cdleme22d (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š))

Proof of Theorem cdleme22d
StepHypRef Expression
1 simp3r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑆 ≀ (𝑇 ∨ 𝑉))
2 simp1l 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝐾 ∈ HL)
3 simp22l 1289 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑇 ∈ 𝐴)
4 simp23l 1291 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 ∈ 𝐴)
5 cdleme22.l . . . . . . . 8 ≀ = (leβ€˜πΎ)
6 cdleme22.j . . . . . . . 8 ∨ = (joinβ€˜πΎ)
7 cdleme22.a . . . . . . . 8 𝐴 = (Atomsβ€˜πΎ)
85, 6, 7hlatlej1 38701 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ 𝑇 ≀ (𝑇 ∨ 𝑉))
92, 3, 4, 8syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑇 ≀ (𝑇 ∨ 𝑉))
102hllatd 38690 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝐾 ∈ Lat)
11 simp21l 1287 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑆 ∈ 𝐴)
12 eqid 2724 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1312, 7atbase 38615 . . . . . . . 8 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1411, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1512, 7atbase 38615 . . . . . . . 8 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
163, 15syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
1712, 6, 7hlatjcl 38693 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ (𝑇 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
182, 3, 4, 17syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (𝑇 ∨ 𝑉) ∈ (Baseβ€˜πΎ))
1912, 5, 6latjle12 18404 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ 𝑉) ∈ (Baseβ€˜πΎ))) β†’ ((𝑆 ≀ (𝑇 ∨ 𝑉) ∧ 𝑇 ≀ (𝑇 ∨ 𝑉)) ↔ (𝑆 ∨ 𝑇) ≀ (𝑇 ∨ 𝑉)))
2010, 14, 16, 18, 19syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑆 ≀ (𝑇 ∨ 𝑉) ∧ 𝑇 ≀ (𝑇 ∨ 𝑉)) ↔ (𝑆 ∨ 𝑇) ≀ (𝑇 ∨ 𝑉)))
211, 9, 20mpbi2and 709 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (𝑆 ∨ 𝑇) ≀ (𝑇 ∨ 𝑉))
2212, 6, 7hlatjcl 38693 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
232, 11, 3, 22syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
24 simp1r 1195 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ π‘Š ∈ 𝐻)
25 cdleme22.h . . . . . . . 8 𝐻 = (LHypβ€˜πΎ)
2612, 25lhpbase 39325 . . . . . . 7 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
2724, 26syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
28 cdleme22.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
2912, 5, 28latmlem1 18423 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑆 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ 𝑉) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ))) β†’ ((𝑆 ∨ 𝑇) ≀ (𝑇 ∨ 𝑉) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) ≀ ((𝑇 ∨ 𝑉) ∧ π‘Š)))
3010, 23, 18, 27, 29syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑆 ∨ 𝑇) ≀ (𝑇 ∨ 𝑉) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) ≀ ((𝑇 ∨ 𝑉) ∧ π‘Š)))
3121, 30mpd 15 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) ≀ ((𝑇 ∨ 𝑉) ∧ π‘Š))
32 simp1 1133 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
33 simp22 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š))
34 eqid 2724 . . . . . . . 8 (0.β€˜πΎ) = (0.β€˜πΎ)
355, 28, 34, 7, 25lhpmat 39357 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) β†’ (𝑇 ∧ π‘Š) = (0.β€˜πΎ))
3632, 33, 35syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (𝑇 ∧ π‘Š) = (0.β€˜πΎ))
3736oveq1d 7416 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑇 ∧ π‘Š) ∨ 𝑉) = ((0.β€˜πΎ) ∨ 𝑉))
38 simp23r 1292 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 ≀ π‘Š)
3912, 5, 6, 28, 7atmod4i1 39193 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑉 ∈ 𝐴 ∧ 𝑇 ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) ∧ 𝑉 ≀ π‘Š) β†’ ((𝑇 ∧ π‘Š) ∨ 𝑉) = ((𝑇 ∨ 𝑉) ∧ π‘Š))
402, 4, 16, 27, 38, 39syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑇 ∧ π‘Š) ∨ 𝑉) = ((𝑇 ∨ 𝑉) ∧ π‘Š))
41 hlol 38687 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
422, 41syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝐾 ∈ OL)
4312, 7atbase 38615 . . . . . . 7 (𝑉 ∈ 𝐴 β†’ 𝑉 ∈ (Baseβ€˜πΎ))
444, 43syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 ∈ (Baseβ€˜πΎ))
4512, 6, 34olj02 38552 . . . . . 6 ((𝐾 ∈ OL ∧ 𝑉 ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ) ∨ 𝑉) = 𝑉)
4642, 44, 45syl2anc 583 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((0.β€˜πΎ) ∨ 𝑉) = 𝑉)
4737, 40, 463eqtr3d 2772 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑇 ∨ 𝑉) ∧ π‘Š) = 𝑉)
4831, 47breqtrd 5164 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) ≀ 𝑉)
49 hlatl 38686 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
502, 49syl 17 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝐾 ∈ AtLat)
51 simp21r 1288 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ Β¬ 𝑆 ≀ π‘Š)
52 simp3l 1198 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑆 β‰  𝑇)
535, 6, 28, 7, 25lhpat 39370 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ 𝑆 β‰  𝑇)) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) ∈ 𝐴)
542, 24, 11, 51, 3, 52, 53syl222anc 1383 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) ∈ 𝐴)
555, 7atcmp 38637 . . . 4 ((𝐾 ∈ AtLat ∧ ((𝑆 ∨ 𝑇) ∧ π‘Š) ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) β†’ (((𝑆 ∨ 𝑇) ∧ π‘Š) ≀ 𝑉 ↔ ((𝑆 ∨ 𝑇) ∧ π‘Š) = 𝑉))
5650, 54, 4, 55syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ (((𝑆 ∨ 𝑇) ∧ π‘Š) ≀ 𝑉 ↔ ((𝑆 ∨ 𝑇) ∧ π‘Š) = 𝑉))
5748, 56mpbid 231 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ ((𝑆 ∨ 𝑇) ∧ π‘Š) = 𝑉)
5857eqcomd 2730 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≀ π‘Š)) ∧ (𝑆 β‰  𝑇 ∧ 𝑆 ≀ (𝑇 ∨ 𝑉))) β†’ 𝑉 = ((𝑆 ∨ 𝑇) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  Basecbs 17142  lecple 17202  joincjn 18265  meetcmee 18266  0.cp0 18377  Latclat 18385  OLcol 38500  Atomscatm 38589  AtLatcal 38590  HLchlt 38676  LHypclh 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-proset 18249  df-poset 18267  df-plt 18284  df-lub 18300  df-glb 18301  df-join 18302  df-meet 18303  df-p0 18379  df-p1 18380  df-lat 18386  df-clat 18453  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315
This theorem is referenced by:  cdleme22g  39675
  Copyright terms: Public domain W3C validator