Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem10 Structured version   Visualization version   GIF version

Theorem 4atlem10 39563
Description: Lemma for 4at 39570. Combine both possible cases. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))

Proof of Theorem 4atlem10
StepHypRef Expression
1 simp11 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 39320 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 simp21l 1290 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 4at.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 39245 . . . 4 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
8 simp21r 1291 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
94, 5atbase 39245 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
11 4at.j . . . . . 6 = (join‘𝐾)
124, 11, 5hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
13123ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
14 simp22 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
15 simp23 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑊𝐴)
164, 11, 5hlatjcl 39323 . . . . 5 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
171, 14, 15, 16syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉 𝑊) ∈ (Base‘𝐾))
184, 11latjcl 18509 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))
192, 13, 17, 18syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))
20 4at.l . . . 4 = (le‘𝐾)
214, 20, 11latjle12 18520 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊))))
222, 7, 10, 19, 21syl13anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊))))
23 simp11 1203 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
243, 8, 143jca 1128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴𝑉𝐴))
25243ad2ant1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑅𝐴𝑆𝐴𝑉𝐴))
26153ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑊𝐴)
27 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑄) 𝑊))
28 simp33 1211 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
29283ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
3026, 27, 293jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑊𝐴 ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
31 simp3 1138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))))
3220, 11, 54atlem10b 39562 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑉𝐴) ∧ (𝑊𝐴 ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
3323, 25, 30, 31, 32syl31anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
34333exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))))
3511, 5hlatjcom 39324 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅) = (𝑅 𝑆))
361, 8, 3, 35syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 𝑅) = (𝑅 𝑆))
3736oveq2d 7464 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑅 𝑆)))
38373ad2ant1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑅 𝑆)))
39 simp11 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
408, 3, 143jca 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝐴𝑅𝐴𝑉𝐴))
41403ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆𝐴𝑅𝐴𝑉𝐴))
42153ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑊𝐴)
43 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑊))
44 simp12 1204 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
45 simp13 1205 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
4644, 45jca 511 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝐴𝑄𝐴))
47 simp21 1206 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴))
48 simp32 1210 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
4920, 11, 54atlem0a 39550 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
501, 46, 47, 48, 28, 49syl32anc 1378 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
51503ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
5242, 43, 513jca 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑊𝐴 ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑆)))
53 simprr 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))
54 simprl 770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑄) (𝑉 𝑊)))
5553, 54jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊))))
56553adant2 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊))))
5720, 11, 54atlem10b 39562 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑅𝐴𝑉𝐴) ∧ (𝑊𝐴 ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑆))) ∧ (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑉 𝑊)))
5839, 41, 52, 56, 57syl31anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑉 𝑊)))
5938, 58eqtr3d 2782 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
60593exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑆 ((𝑃 𝑄) 𝑊) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))))
61 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
62 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6320, 11, 54atlem3b 39555 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑄) 𝑊)))
6461, 3, 8, 15, 62, 63syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑄) 𝑊)))
6534, 60, 64mpjaod 859 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))
6622, 65sylbird 260 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457
This theorem is referenced by:  4atlem11b  39565
  Copyright terms: Public domain W3C validator