Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem10 Structured version   Visualization version   GIF version

Theorem 4atlem10 37547
Description: Lemma for 4at 37554. Combine both possible cases. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))

Proof of Theorem 4atlem10
StepHypRef Expression
1 simp11 1201 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 37305 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 simp21l 1288 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 4at.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 37230 . . . 4 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
8 simp21r 1289 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
94, 5atbase 37230 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
11 4at.j . . . . . 6 = (join‘𝐾)
124, 11, 5hlatjcl 37308 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
13123ad2ant1 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
14 simp22 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
15 simp23 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑊𝐴)
164, 11, 5hlatjcl 37308 . . . . 5 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
171, 14, 15, 16syl3anc 1369 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉 𝑊) ∈ (Base‘𝐾))
184, 11latjcl 18072 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))
192, 13, 17, 18syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))
20 4at.l . . . 4 = (le‘𝐾)
214, 20, 11latjle12 18083 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊))))
222, 7, 10, 19, 21syl13anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊))))
23 simp11 1201 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
243, 8, 143jca 1126 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴𝑉𝐴))
25243ad2ant1 1131 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑅𝐴𝑆𝐴𝑉𝐴))
26153ad2ant1 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑊𝐴)
27 simp2 1135 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑄) 𝑊))
28 simp33 1209 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
29283ad2ant1 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
3026, 27, 293jca 1126 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑊𝐴 ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
31 simp3 1136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))))
3220, 11, 54atlem10b 37546 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑉𝐴) ∧ (𝑊𝐴 ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
3323, 25, 30, 31, 32syl31anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
34333exp 1117 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))))
3511, 5hlatjcom 37309 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅) = (𝑅 𝑆))
361, 8, 3, 35syl3anc 1369 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 𝑅) = (𝑅 𝑆))
3736oveq2d 7271 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑅 𝑆)))
38373ad2ant1 1131 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑅 𝑆)))
39 simp11 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
408, 3, 143jca 1126 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝐴𝑅𝐴𝑉𝐴))
41403ad2ant1 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆𝐴𝑅𝐴𝑉𝐴))
42153ad2ant1 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑊𝐴)
43 simp2 1135 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑊))
44 simp12 1202 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
45 simp13 1203 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
4644, 45jca 511 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝐴𝑄𝐴))
47 simp21 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴))
48 simp32 1208 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
4920, 11, 54atlem0a 37534 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
501, 46, 47, 48, 28, 49syl32anc 1376 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
51503ad2ant1 1131 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
5242, 43, 513jca 1126 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑊𝐴 ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑆)))
53 simprr 769 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))
54 simprl 767 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑄) (𝑉 𝑊)))
5553, 54jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊))))
56553adant2 1129 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊))))
5720, 11, 54atlem10b 37546 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑅𝐴𝑉𝐴) ∧ (𝑊𝐴 ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑆))) ∧ (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑉 𝑊)))
5839, 41, 52, 56, 57syl31anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑉 𝑊)))
5938, 58eqtr3d 2780 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
60593exp 1117 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑆 ((𝑃 𝑄) 𝑊) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))))
61 simp1 1134 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
62 simp3 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6320, 11, 54atlem3b 37539 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑄) 𝑊)))
6461, 3, 8, 15, 62, 63syl131anc 1381 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑄) 𝑊)))
6534, 60, 64mpjaod 856 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))
6622, 65sylbird 259 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lvols 37441
This theorem is referenced by:  4atlem11b  37549
  Copyright terms: Public domain W3C validator