Proof of Theorem 4atlem10
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1204 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) | 
| 2 | 1 | hllatd 39365 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) | 
| 3 |  | simp21l 1291 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) | 
| 4 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 5 |  | 4at.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 | 4, 5 | atbase 39290 | . . . 4
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) | 
| 7 | 3, 6 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ (Base‘𝐾)) | 
| 8 |  | simp21r 1292 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) | 
| 9 | 4, 5 | atbase 39290 | . . . 4
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) | 
| 10 | 8, 9 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ (Base‘𝐾)) | 
| 11 |  | 4at.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 12 | 4, 11, 5 | hlatjcl 39368 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 13 | 12 | 3ad2ant1 1134 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) | 
| 14 |  | simp22 1208 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) | 
| 15 |  | simp23 1209 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑊 ∈ 𝐴) | 
| 16 | 4, 11, 5 | hlatjcl 39368 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) | 
| 17 | 1, 14, 15, 16 | syl3anc 1373 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) | 
| 18 | 4, 11 | latjcl 18484 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) | 
| 19 | 2, 13, 17, 18 | syl3anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) | 
| 20 |  | 4at.l | . . . 4
⊢  ≤ =
(le‘𝐾) | 
| 21 | 4, 20, 11 | latjle12 18495 | . . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) | 
| 22 | 2, 7, 10, 19, 21 | syl13anc 1374 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) | 
| 23 |  | simp11 1204 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) | 
| 24 | 3, 8, 14 | 3jca 1129 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) | 
| 25 | 24 | 3ad2ant1 1134 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) | 
| 26 | 15 | 3ad2ant1 1134 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑊 ∈ 𝐴) | 
| 27 |  | simp2 1138 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊)) | 
| 28 |  | simp33 1212 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 29 | 28 | 3ad2ant1 1134 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) | 
| 30 | 26, 27, 29 | 3jca 1129 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑊 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | 
| 31 |  | simp3 1139 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) | 
| 32 | 20, 11, 5 | 4atlem10b 39607 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑊 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 33 | 23, 25, 30, 31, 32 | syl31anc 1375 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 34 | 33 | 3exp 1120 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))))) | 
| 35 | 11, 5 | hlatjcom 39369 | . . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∨ 𝑅) = (𝑅 ∨ 𝑆)) | 
| 36 | 1, 8, 3, 35 | syl3anc 1373 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ∨ 𝑅) = (𝑅 ∨ 𝑆)) | 
| 37 | 36 | oveq2d 7447 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) | 
| 38 | 37 | 3ad2ant1 1134 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) | 
| 39 |  | simp11 1204 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) | 
| 40 | 8, 3, 14 | 3jca 1129 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) | 
| 41 | 40 | 3ad2ant1 1134 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) | 
| 42 | 15 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑊 ∈ 𝐴) | 
| 43 |  | simp2 1138 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊)) | 
| 44 |  | simp12 1205 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) | 
| 45 |  | simp13 1206 | . . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ 𝐴) | 
| 46 | 44, 45 | jca 511 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) | 
| 47 |  | simp21 1207 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) | 
| 48 |  | simp32 1211 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) | 
| 49 | 20, 11, 5 | 4atlem0a 39595 | . . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) | 
| 50 | 1, 46, 47, 48, 28, 49 | syl32anc 1380 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) | 
| 51 | 50 | 3ad2ant1 1134 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) | 
| 52 | 42, 43, 51 | 3jca 1129 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑊 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) | 
| 53 |  | simprr 773 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 54 |  | simprl 771 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 55 | 53, 54 | jca 511 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) | 
| 56 | 55 | 3adant2 1132 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) | 
| 57 | 20, 11, 5 | 4atlem10b 39607 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑊 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) ∧ (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 58 | 39, 41, 52, 56, 57 | syl31anc 1375 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 59 | 38, 58 | eqtr3d 2779 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) | 
| 60 | 59 | 3exp 1120 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))))) | 
| 61 |  | simp1 1137 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) | 
| 62 |  | simp3 1139 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) | 
| 63 | 20, 11, 5 | 4atlem3b 39600 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊))) | 
| 64 | 61, 3, 8, 15, 62, 63 | syl131anc 1385 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊))) | 
| 65 | 34, 60, 64 | mpjaod 861 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) | 
| 66 | 22, 65 | sylbird 260 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |