Proof of Theorem 4atlem10
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37305 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) |
3 | | simp21l 1288 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
4 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
5 | | 4at.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 4, 5 | atbase 37230 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
7 | 3, 6 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ (Base‘𝐾)) |
8 | | simp21r 1289 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
9 | 4, 5 | atbase 37230 |
. . . 4
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ (Base‘𝐾)) |
11 | | 4at.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
12 | 4, 11, 5 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
13 | 12 | 3ad2ant1 1131 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
14 | | simp22 1205 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) |
15 | | simp23 1206 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑊 ∈ 𝐴) |
16 | 4, 11, 5 | hlatjcl 37308 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
17 | 1, 14, 15, 16 | syl3anc 1369 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) |
18 | 4, 11 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑉 ∨ 𝑊) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
19 | 2, 13, 17, 18 | syl3anc 1369 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾)) |
20 | | 4at.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
21 | 4, 20, 11 | latjle12 18083 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |
22 | 2, 7, 10, 19, 21 | syl13anc 1370 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |
23 | | simp11 1201 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
24 | 3, 8, 14 | 3jca 1126 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) |
25 | 24 | 3ad2ant1 1131 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) |
26 | 15 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑊 ∈ 𝐴) |
27 | | simp2 1135 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊)) |
28 | | simp33 1209 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
29 | 28 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅)) |
30 | 26, 27, 29 | 3jca 1126 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑊 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
31 | | simp3 1136 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |
32 | 20, 11, 5 | 4atlem10b 37546 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑊 ∈ 𝐴 ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
33 | 23, 25, 30, 31, 32 | syl31anc 1371 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
34 | 33 | 3exp 1117 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))))) |
35 | 11, 5 | hlatjcom 37309 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → (𝑆 ∨ 𝑅) = (𝑅 ∨ 𝑆)) |
36 | 1, 8, 3, 35 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ∨ 𝑅) = (𝑅 ∨ 𝑆)) |
37 | 36 | oveq2d 7271 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
38 | 37 | 3ad2ant1 1131 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
39 | | simp11 1201 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
40 | 8, 3, 14 | 3jca 1126 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) |
41 | 40 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) |
42 | 15 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑊 ∈ 𝐴) |
43 | | simp2 1135 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊)) |
44 | | simp12 1202 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) |
45 | | simp13 1203 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ 𝐴) |
46 | 44, 45 | jca 511 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
47 | | simp21 1204 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) |
48 | | simp32 1208 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
49 | 20, 11, 5 | 4atlem0a 37534 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
50 | 1, 46, 47, 48, 28, 49 | syl32anc 1376 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
51 | 50 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆)) |
52 | 42, 43, 51 | 3jca 1126 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑊 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) |
53 | | simprr 769 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
54 | | simprl 767 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
55 | 53, 54 | jca 511 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |
56 | 55 | 3adant2 1129 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |
57 | 20, 11, 5 | 4atlem10b 37546 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) ∧ (𝑊 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ ¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑆))) ∧ (𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
58 | 39, 41, 52, 56, 57 | syl31anc 1371 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑆 ∨ 𝑅)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
59 | 38, 58 | eqtr3d 2780 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∧ (𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) |
60 | 59 | 3exp 1117 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))))) |
61 | | simp1 1134 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
62 | | simp3 1136 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
63 | 20, 11, 5 | 4atlem3b 37539 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊))) |
64 | 61, 3, 8, 15, 62, 63 | syl131anc 1381 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (¬ 𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊) ∨ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑊))) |
65 | 34, 60, 64 | mpjaod 856 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) ∧ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |
66 | 22, 65 | sylbird 259 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑉 ∈ 𝐴 ∧ 𝑊 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ∨ 𝑆) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑉 ∨ 𝑊)))) |