Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem10 Structured version   Visualization version   GIF version

Theorem 4atlem10 39595
Description: Lemma for 4at 39602. Combine both possible cases. (Contributed by NM, 9-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))

Proof of Theorem 4atlem10
StepHypRef Expression
1 simp11 1204 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
21hllatd 39353 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
3 simp21l 1291 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
5 4at.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 39278 . . . 4 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
73, 6syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
8 simp21r 1292 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
94, 5atbase 39278 . . . 4 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
108, 9syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
11 4at.j . . . . . 6 = (join‘𝐾)
124, 11, 5hlatjcl 39356 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
13123ad2ant1 1133 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
14 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
15 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑊𝐴)
164, 11, 5hlatjcl 39356 . . . . 5 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑊𝐴) → (𝑉 𝑊) ∈ (Base‘𝐾))
171, 14, 15, 16syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑉 𝑊) ∈ (Base‘𝐾))
184, 11latjcl 18345 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑉 𝑊) ∈ (Base‘𝐾)) → ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))
192, 13, 17, 18syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))
20 4at.l . . . 4 = (le‘𝐾)
214, 20, 11latjle12 18356 . . 3 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) (𝑉 𝑊)) ∈ (Base‘𝐾))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊))))
222, 7, 10, 19, 21syl13anc 1374 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) ↔ (𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊))))
23 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
243, 8, 143jca 1128 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴𝑉𝐴))
25243ad2ant1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑅𝐴𝑆𝐴𝑉𝐴))
26153ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑊𝐴)
27 simp2 1137 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑄) 𝑊))
28 simp33 1212 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
29283ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑅))
3026, 27, 293jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑊𝐴 ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
31 simp3 1138 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))))
3220, 11, 54atlem10b 39594 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑉𝐴) ∧ (𝑊𝐴 ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
3323, 25, 30, 31, 32syl31anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
34333exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))))
3511, 5hlatjcom 39357 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑅𝐴) → (𝑆 𝑅) = (𝑅 𝑆))
361, 8, 3, 35syl3anc 1373 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆 𝑅) = (𝑅 𝑆))
3736oveq2d 7365 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑅 𝑆)))
38373ad2ant1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑅 𝑆)))
39 simp11 1204 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
408, 3, 143jca 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑆𝐴𝑅𝐴𝑉𝐴))
41403ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆𝐴𝑅𝐴𝑉𝐴))
42153ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑊𝐴)
43 simp2 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑆 ((𝑃 𝑄) 𝑊))
44 simp12 1205 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
45 simp13 1206 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
4644, 45jca 511 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝐴𝑄𝐴))
47 simp21 1207 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅𝐴𝑆𝐴))
48 simp32 1211 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 (𝑃 𝑄))
4920, 11, 54atlem0a 39582 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
501, 46, 47, 48, 28, 49syl32anc 1380 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
51503ad2ant1 1133 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ¬ 𝑅 ((𝑃 𝑄) 𝑆))
5242, 43, 513jca 1128 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑊𝐴 ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑆)))
53 simprr 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))
54 simprl 770 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → 𝑅 ((𝑃 𝑄) (𝑉 𝑊)))
5553, 54jca 511 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊))))
56553adant2 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊))))
5720, 11, 54atlem10b 39594 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑅𝐴𝑉𝐴) ∧ (𝑊𝐴 ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ ¬ 𝑅 ((𝑃 𝑄) 𝑆))) ∧ (𝑆 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑅 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑉 𝑊)))
5839, 41, 52, 56, 57syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑆 𝑅)) = ((𝑃 𝑄) (𝑉 𝑊)))
5938, 58eqtr3d 2766 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑊) ∧ (𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊)))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))
60593exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑆 ((𝑃 𝑄) 𝑊) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊)))))
61 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
62 simp3 1138 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6320, 11, 54atlem3b 39587 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑄) 𝑊)))
6461, 3, 8, 15, 62, 63syl131anc 1385 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (¬ 𝑅 ((𝑃 𝑄) 𝑊) ∨ ¬ 𝑆 ((𝑃 𝑄) 𝑊)))
6534, 60, 64mpjaod 860 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑃 𝑄) (𝑉 𝑊)) ∧ 𝑆 ((𝑃 𝑄) (𝑉 𝑊))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))
6622, 65sylbird 260 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ ((𝑅𝐴𝑆𝐴) ∧ 𝑉𝐴𝑊𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 𝑆) ((𝑃 𝑄) (𝑉 𝑊)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) (𝑉 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39252  HLchlt 39339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488  df-lvols 39489
This theorem is referenced by:  4atlem11b  39597
  Copyright terms: Public domain W3C validator