MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr1r Structured version   Visualization version   GIF version

Theorem simpr1r 1229
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr1r ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simpr1r
StepHypRef Expression
1 simprr 769 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr1 1186 1 ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  oppccatid  17347  subccatid  17477  setccatid  17715  catccatid  17737  estrccatid  17764  xpccatid  17821  gsmsymgreqlem1  18953  dmdprdsplit  19565  neitr  22239  neitx  22666  tx1stc  22709  utop3cls  23311  metustsym  23617  clwwlkccat  28255  3pthdlem1  28429  archiabllem1  31349  esumpcvgval  31946  esum2d  31961  poxp2  33717  ifscgr  34273  btwnconn1lem8  34323  btwnconn1lem11  34326  btwnconn1lem12  34327  segletr  34343  broutsideof3  34355  unbdqndv2  34618  lhp2lt  37942  cdlemf2  38503  cdlemn11pre  39151  stoweidlem60  43491  isthincd2  46207  mndtccatid  46260
  Copyright terms: Public domain W3C validator