MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr1r Structured version   Visualization version   GIF version

Theorem simpr1r 1230
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr1r ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simpr1r
StepHypRef Expression
1 simprr 770 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr1 1187 1 ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  oppccatid  17430  subccatid  17561  setccatid  17799  catccatid  17821  estrccatid  17848  xpccatid  17905  gsmsymgreqlem1  19038  dmdprdsplit  19650  neitr  22331  neitx  22758  tx1stc  22801  utop3cls  23403  metustsym  23711  clwwlkccat  28354  3pthdlem1  28528  archiabllem1  31447  esumpcvgval  32046  esum2d  32061  poxp2  33790  ifscgr  34346  btwnconn1lem8  34396  btwnconn1lem11  34399  btwnconn1lem12  34400  segletr  34416  broutsideof3  34428  unbdqndv2  34691  lhp2lt  38015  cdlemf2  38576  cdlemn11pre  39224  stoweidlem60  43601  isthincd2  46319  mndtccatid  46374
  Copyright terms: Public domain W3C validator