| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8073 oppccatid 17622 subccatid 17750 setccatid 17988 catccatid 18010 estrccatid 18035 xpccatid 18091 gsmsymgreqlem1 19340 dmdprdsplit 19959 neitr 23093 neitx 23520 tx1stc 23563 utop3cls 24164 metustsym 24468 clwwlkccat 29965 3pthdlem1 30139 archiabllem1 33157 esumpcvgval 34086 esum2d 34101 ifscgr 36077 btwnconn1lem8 36127 btwnconn1lem11 36130 btwnconn1lem12 36131 segletr 36147 broutsideof3 36159 unbdqndv2 36544 lhp2lt 40039 cdlemf2 40600 cdlemn11pre 41248 stoweidlem60 46097 ssccatid 49103 isthincd2 49468 mndtccatid 49618 |
| Copyright terms: Public domain | W3C validator |