Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr1 1187 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: oppccatid 17430 subccatid 17561 setccatid 17799 catccatid 17821 estrccatid 17848 xpccatid 17905 gsmsymgreqlem1 19038 dmdprdsplit 19650 neitr 22331 neitx 22758 tx1stc 22801 utop3cls 23403 metustsym 23711 clwwlkccat 28354 3pthdlem1 28528 archiabllem1 31447 esumpcvgval 32046 esum2d 32061 poxp2 33790 ifscgr 34346 btwnconn1lem8 34396 btwnconn1lem11 34399 btwnconn1lem12 34400 segletr 34416 broutsideof3 34428 unbdqndv2 34691 lhp2lt 38015 cdlemf2 38576 cdlemn11pre 39224 stoweidlem60 43601 isthincd2 46319 mndtccatid 46374 |
Copyright terms: Public domain | W3C validator |