| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8083 oppccatid 17643 subccatid 17771 setccatid 18009 catccatid 18031 estrccatid 18056 xpccatid 18112 gsmsymgreqlem1 19327 dmdprdsplit 19946 neitr 23083 neitx 23510 tx1stc 23553 utop3cls 24155 metustsym 24459 clwwlkccat 29952 3pthdlem1 30126 archiabllem1 33145 esumpcvgval 34044 esum2d 34059 ifscgr 36017 btwnconn1lem8 36067 btwnconn1lem11 36070 btwnconn1lem12 36071 segletr 36087 broutsideof3 36099 unbdqndv2 36484 lhp2lt 39980 cdlemf2 40541 cdlemn11pre 41189 stoweidlem60 46042 ssccatid 49058 isthincd2 49423 mndtccatid 49573 |
| Copyright terms: Public domain | W3C validator |