MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr1r Structured version   Visualization version   GIF version

Theorem simpr1r 1232
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr1r ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simpr1r
StepHypRef Expression
1 simprr 772 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr1 1189 1 ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090
This theorem is referenced by:  poxp2  8076  oppccatid  17606  subccatid  17737  setccatid  17975  catccatid  17997  estrccatid  18024  xpccatid  18081  gsmsymgreqlem1  19217  dmdprdsplit  19831  neitr  22547  neitx  22974  tx1stc  23017  utop3cls  23619  metustsym  23927  clwwlkccat  28976  3pthdlem1  29150  archiabllem1  32078  esumpcvgval  32734  esum2d  32749  ifscgr  34675  btwnconn1lem8  34725  btwnconn1lem11  34728  btwnconn1lem12  34729  segletr  34745  broutsideof3  34757  unbdqndv2  35020  lhp2lt  38510  cdlemf2  39071  cdlemn11pre  39719  stoweidlem60  44387  isthincd2  47144  mndtccatid  47199
  Copyright terms: Public domain W3C validator