![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr1 1188 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp2 8184 oppccatid 17779 subccatid 17910 setccatid 18151 catccatid 18173 estrccatid 18200 xpccatid 18257 gsmsymgreqlem1 19472 dmdprdsplit 20091 neitr 23209 neitx 23636 tx1stc 23679 utop3cls 24281 metustsym 24589 clwwlkccat 30022 3pthdlem1 30196 archiabllem1 33173 esumpcvgval 34042 esum2d 34057 ifscgr 36008 btwnconn1lem8 36058 btwnconn1lem11 36061 btwnconn1lem12 36062 segletr 36078 broutsideof3 36090 unbdqndv2 36477 lhp2lt 39958 cdlemf2 40519 cdlemn11pre 41167 stoweidlem60 45981 isthincd2 48705 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |