| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 oppccatid 17687 subccatid 17815 setccatid 18053 catccatid 18075 estrccatid 18100 xpccatid 18156 gsmsymgreqlem1 19367 dmdprdsplit 19986 neitr 23074 neitx 23501 tx1stc 23544 utop3cls 24146 metustsym 24450 clwwlkccat 29926 3pthdlem1 30100 archiabllem1 33154 esumpcvgval 34075 esum2d 34090 ifscgr 36039 btwnconn1lem8 36089 btwnconn1lem11 36092 btwnconn1lem12 36093 segletr 36109 broutsideof3 36121 unbdqndv2 36506 lhp2lt 40002 cdlemf2 40563 cdlemn11pre 41211 stoweidlem60 46065 ssccatid 49065 isthincd2 49430 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |