Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 769 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr1 1186 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: oppccatid 17347 subccatid 17477 setccatid 17715 catccatid 17737 estrccatid 17764 xpccatid 17821 gsmsymgreqlem1 18953 dmdprdsplit 19565 neitr 22239 neitx 22666 tx1stc 22709 utop3cls 23311 metustsym 23617 clwwlkccat 28255 3pthdlem1 28429 archiabllem1 31349 esumpcvgval 31946 esum2d 31961 poxp2 33717 ifscgr 34273 btwnconn1lem8 34323 btwnconn1lem11 34326 btwnconn1lem12 34327 segletr 34343 broutsideof3 34355 unbdqndv2 34618 lhp2lt 37942 cdlemf2 38503 cdlemn11pre 39151 stoweidlem60 43491 isthincd2 46207 mndtccatid 46260 |
Copyright terms: Public domain | W3C validator |