MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr1r Structured version   Visualization version   GIF version

Theorem simpr1r 1232
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr1r ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)

Proof of Theorem simpr1r
StepHypRef Expression
1 simprr 772 . 2 ((𝜏 ∧ (𝜑𝜓)) → 𝜓)
213ad2antr1 1189 1 ((𝜏 ∧ ((𝜑𝜓) ∧ 𝜒𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8079  oppccatid  17627  subccatid  17755  setccatid  17993  catccatid  18015  estrccatid  18040  xpccatid  18096  gsmsymgreqlem1  19344  dmdprdsplit  19963  neitr  23096  neitx  23523  tx1stc  23566  utop3cls  24167  metustsym  24471  clwwlkccat  29972  3pthdlem1  30146  archiabllem1  33169  esumpcvgval  34112  esum2d  34127  ifscgr  36109  btwnconn1lem8  36159  btwnconn1lem11  36162  btwnconn1lem12  36163  segletr  36179  broutsideof3  36191  unbdqndv2  36576  lhp2lt  40120  cdlemf2  40681  cdlemn11pre  41329  stoweidlem60  46182  ssccatid  49197  isthincd2  49562  mndtccatid  49712
  Copyright terms: Public domain W3C validator