![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 771 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2antr1 1188 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: poxp2 8128 oppccatid 17664 subccatid 17795 setccatid 18033 catccatid 18055 estrccatid 18082 xpccatid 18139 gsmsymgreqlem1 19297 dmdprdsplit 19916 neitr 22683 neitx 23110 tx1stc 23153 utop3cls 23755 metustsym 24063 clwwlkccat 29240 3pthdlem1 29414 archiabllem1 32334 esumpcvgval 33071 esum2d 33086 ifscgr 35011 btwnconn1lem8 35061 btwnconn1lem11 35064 btwnconn1lem12 35065 segletr 35081 broutsideof3 35093 unbdqndv2 35382 lhp2lt 38867 cdlemf2 39428 cdlemn11pre 40076 stoweidlem60 44766 isthincd2 47648 mndtccatid 47703 |
Copyright terms: Public domain | W3C validator |