| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8142 oppccatid 17731 subccatid 17859 setccatid 18097 catccatid 18119 estrccatid 18144 xpccatid 18200 gsmsymgreqlem1 19411 dmdprdsplit 20030 neitr 23118 neitx 23545 tx1stc 23588 utop3cls 24190 metustsym 24494 clwwlkccat 29971 3pthdlem1 30145 archiabllem1 33191 esumpcvgval 34109 esum2d 34124 ifscgr 36062 btwnconn1lem8 36112 btwnconn1lem11 36115 btwnconn1lem12 36116 segletr 36132 broutsideof3 36144 unbdqndv2 36529 lhp2lt 40020 cdlemf2 40581 cdlemn11pre 41229 stoweidlem60 46089 ssccatid 49039 isthincd2 49323 mndtccatid 49464 |
| Copyright terms: Public domain | W3C validator |