| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1r | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8122 oppccatid 17680 subccatid 17808 setccatid 18046 catccatid 18068 estrccatid 18093 xpccatid 18149 gsmsymgreqlem1 19360 dmdprdsplit 19979 neitr 23067 neitx 23494 tx1stc 23537 utop3cls 24139 metustsym 24443 clwwlkccat 29919 3pthdlem1 30093 archiabllem1 33147 esumpcvgval 34068 esum2d 34083 ifscgr 36032 btwnconn1lem8 36082 btwnconn1lem11 36085 btwnconn1lem12 36086 segletr 36102 broutsideof3 36114 unbdqndv2 36499 lhp2lt 39995 cdlemf2 40556 cdlemn11pre 41204 stoweidlem60 46058 ssccatid 49061 isthincd2 49426 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |