| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmdprdsplit | Structured version Visualization version GIF version | ||
| Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| Ref | Expression |
|---|---|
| dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
| dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| dmdprdsplit | ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd 𝑆) | |
| 2 | dprdsplit.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
| 3 | 2 | fdmd 6701 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → dom 𝑆 = 𝐼) |
| 5 | ssun1 4144 | . . . . . . 7 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
| 6 | dprdsplit.u | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐼 = (𝐶 ∪ 𝐷)) |
| 8 | 5, 7 | sseqtrrid 3993 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐶 ⊆ 𝐼) |
| 9 | 1, 4, 8 | dprdres 19967 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
| 10 | 9 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
| 11 | ssun2 4145 | . . . . . . 7 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
| 12 | 11, 7 | sseqtrrid 3993 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐷 ⊆ 𝐼) |
| 13 | 1, 4, 12 | dprdres 19967 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
| 14 | 13 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
| 15 | 10, 14 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷))) |
| 16 | dprdsplit.i | . . . . 5 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐶 ∩ 𝐷) = ∅) |
| 18 | dmdprdsplit.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 19 | 1, 4, 8, 12, 17, 18 | dprdcntz2 19977 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
| 20 | dmdprdsplit.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 21 | 1, 4, 8, 12, 17, 20 | dprddisj2 19978 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
| 22 | 15, 19, 21 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) |
| 23 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 24 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → (𝐶 ∩ 𝐷) = ∅) |
| 25 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐼 = (𝐶 ∪ 𝐷)) |
| 26 | simpr1l 1231 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
| 27 | simpr1r 1232 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
| 28 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
| 29 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
| 30 | 23, 24, 25, 18, 20, 26, 27, 28, 29 | dmdprdsplit2 19985 | . 2 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd 𝑆) |
| 31 | 22, 30 | impbida 800 | 1 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 class class class wbr 5110 dom cdm 5641 ↾ cres 5643 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 0gc0g 17409 SubGrpcsubg 19059 Cntzccntz 19254 DProd cdprd 19932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-gsum 17412 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-gim 19198 df-cntz 19256 df-oppg 19285 df-lsm 19573 df-cmn 19719 df-dprd 19934 |
| This theorem is referenced by: dprdsplit 19987 dmdprdpr 19988 dpjcntz 19991 dpjdisj 19992 |
| Copyright terms: Public domain | W3C validator |