Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmdprdsplit | Structured version Visualization version GIF version |
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dmdprdsplit | ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd 𝑆) | |
2 | dprdsplit.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
3 | 2 | fdmd 6595 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → dom 𝑆 = 𝐼) |
5 | ssun1 4102 | . . . . . . 7 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
6 | dprdsplit.u | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐼 = (𝐶 ∪ 𝐷)) |
8 | 5, 7 | sseqtrrid 3970 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐶 ⊆ 𝐼) |
9 | 1, 4, 8 | dprdres 19546 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
10 | 9 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
11 | ssun2 4103 | . . . . . . 7 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
12 | 11, 7 | sseqtrrid 3970 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐷 ⊆ 𝐼) |
13 | 1, 4, 12 | dprdres 19546 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
14 | 13 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
15 | 10, 14 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷))) |
16 | dprdsplit.i | . . . . 5 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐶 ∩ 𝐷) = ∅) |
18 | dmdprdsplit.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
19 | 1, 4, 8, 12, 17, 18 | dprdcntz2 19556 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
20 | dmdprdsplit.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
21 | 1, 4, 8, 12, 17, 20 | dprddisj2 19557 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
22 | 15, 19, 21 | 3jca 1126 | . 2 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) |
23 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
24 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → (𝐶 ∩ 𝐷) = ∅) |
25 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐼 = (𝐶 ∪ 𝐷)) |
26 | simpr1l 1228 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
27 | simpr1r 1229 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
28 | simpr2 1193 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
29 | simpr3 1194 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
30 | 23, 24, 25, 18, 20, 26, 27, 28, 29 | dmdprdsplit2 19564 | . 2 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd 𝑆) |
31 | 22, 30 | impbida 797 | 1 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 0gc0g 17067 SubGrpcsubg 18664 Cntzccntz 18836 DProd cdprd 19511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-gim 18790 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-dprd 19513 |
This theorem is referenced by: dprdsplit 19566 dmdprdpr 19567 dpjcntz 19570 dpjdisj 19571 |
Copyright terms: Public domain | W3C validator |