![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmdprdsplit | Structured version Visualization version GIF version |
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.) |
Ref | Expression |
---|---|
dprdsplit.2 | ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
dprdsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
dprdsplit.u | ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) |
dmdprdsplit.z | ⊢ 𝑍 = (Cntz‘𝐺) |
dmdprdsplit.0 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
dmdprdsplit | ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd 𝑆) | |
2 | dprdsplit.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) | |
3 | 2 | fdmd 6353 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) |
4 | 3 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → dom 𝑆 = 𝐼) |
5 | ssun1 4038 | . . . . . . 7 ⊢ 𝐶 ⊆ (𝐶 ∪ 𝐷) | |
6 | dprdsplit.u | . . . . . . . 8 ⊢ (𝜑 → 𝐼 = (𝐶 ∪ 𝐷)) | |
7 | 6 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐼 = (𝐶 ∪ 𝐷)) |
8 | 5, 7 | syl5sseqr 3911 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐶 ⊆ 𝐼) |
9 | 1, 4, 8 | dprdres 18900 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝐺 DProd 𝑆))) |
10 | 9 | simpld 487 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆 ↾ 𝐶)) |
11 | ssun2 4039 | . . . . . . 7 ⊢ 𝐷 ⊆ (𝐶 ∪ 𝐷) | |
12 | 11, 7 | syl5sseqr 3911 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐷 ⊆ 𝐼) |
13 | 1, 4, 12 | dprdres 18900 | . . . . 5 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐷) ∧ (𝐺 DProd (𝑆 ↾ 𝐷)) ⊆ (𝐺 DProd 𝑆))) |
14 | 13 | simpld 487 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆 ↾ 𝐷)) |
15 | 10, 14 | jca 504 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷))) |
16 | dprdsplit.i | . . . . 5 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
17 | 16 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐶 ∩ 𝐷) = ∅) |
18 | dmdprdsplit.z | . . . 4 ⊢ 𝑍 = (Cntz‘𝐺) | |
19 | 1, 4, 8, 12, 17, 18 | dprdcntz2 18910 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) |
20 | dmdprdsplit.0 | . . . 4 ⊢ 0 = (0g‘𝐺) | |
21 | 1, 4, 8, 12, 17, 20 | dprddisj2 18911 | . . 3 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) |
22 | 15, 19, 21 | 3jca 1108 | . 2 ⊢ ((𝜑 ∧ 𝐺dom DProd 𝑆) → ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) |
23 | 2 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
24 | 16 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → (𝐶 ∩ 𝐷) = ∅) |
25 | 6 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐼 = (𝐶 ∪ 𝐷)) |
26 | simpr1l 1210 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd (𝑆 ↾ 𝐶)) | |
27 | simpr1r 1211 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd (𝑆 ↾ 𝐷)) | |
28 | simpr2 1175 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷)))) | |
29 | simpr3 1176 | . . 3 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }) | |
30 | 23, 24, 25, 18, 20, 26, 27, 28, 29 | dmdprdsplit2 18918 | . 2 ⊢ ((𝜑 ∧ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 })) → 𝐺dom DProd 𝑆) |
31 | 22, 30 | impbida 788 | 1 ⊢ (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆 ↾ 𝐶) ∧ 𝐺dom DProd (𝑆 ↾ 𝐷)) ∧ (𝐺 DProd (𝑆 ↾ 𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆 ↾ 𝐷))) ∧ ((𝐺 DProd (𝑆 ↾ 𝐶)) ∩ (𝐺 DProd (𝑆 ↾ 𝐷))) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∪ cun 3828 ∩ cin 3829 ⊆ wss 3830 ∅c0 4179 {csn 4441 class class class wbr 4929 dom cdm 5407 ↾ cres 5409 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 0gc0g 16569 SubGrpcsubg 18057 Cntzccntz 18216 DProd cdprd 18865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-tpos 7695 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-map 8208 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-0g 16571 df-gsum 16572 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-submnd 17804 df-grp 17894 df-minusg 17895 df-sbg 17896 df-mulg 18012 df-subg 18060 df-ghm 18127 df-gim 18170 df-cntz 18218 df-oppg 18245 df-lsm 18522 df-cmn 18668 df-dprd 18867 |
This theorem is referenced by: dprdsplit 18920 dmdprdpr 18921 dpjcntz 18924 dpjdisj 18925 |
Copyright terms: Public domain | W3C validator |