MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmdprdsplit Structured version   Visualization version   GIF version

Theorem dmdprdsplit 19169
Description: The direct product splits into the direct product of any partition of the index set. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdsplit.2 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
dprdsplit.i (𝜑 → (𝐶𝐷) = ∅)
dprdsplit.u (𝜑𝐼 = (𝐶𝐷))
dmdprdsplit.z 𝑍 = (Cntz‘𝐺)
dmdprdsplit.0 0 = (0g𝐺)
Assertion
Ref Expression
dmdprdsplit (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })))

Proof of Theorem dmdprdsplit
StepHypRef Expression
1 simpr 488 . . . . . 6 ((𝜑𝐺dom DProd 𝑆) → 𝐺dom DProd 𝑆)
2 dprdsplit.2 . . . . . . . 8 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
32fdmd 6513 . . . . . . 7 (𝜑 → dom 𝑆 = 𝐼)
43adantr 484 . . . . . 6 ((𝜑𝐺dom DProd 𝑆) → dom 𝑆 = 𝐼)
5 ssun1 4134 . . . . . . 7 𝐶 ⊆ (𝐶𝐷)
6 dprdsplit.u . . . . . . . 8 (𝜑𝐼 = (𝐶𝐷))
76adantr 484 . . . . . . 7 ((𝜑𝐺dom DProd 𝑆) → 𝐼 = (𝐶𝐷))
85, 7sseqtrrid 4006 . . . . . 6 ((𝜑𝐺dom DProd 𝑆) → 𝐶𝐼)
91, 4, 8dprdres 19150 . . . . 5 ((𝜑𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆𝐶) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝐺 DProd 𝑆)))
109simpld 498 . . . 4 ((𝜑𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆𝐶))
11 ssun2 4135 . . . . . . 7 𝐷 ⊆ (𝐶𝐷)
1211, 7sseqtrrid 4006 . . . . . 6 ((𝜑𝐺dom DProd 𝑆) → 𝐷𝐼)
131, 4, 12dprdres 19150 . . . . 5 ((𝜑𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆𝐷) ∧ (𝐺 DProd (𝑆𝐷)) ⊆ (𝐺 DProd 𝑆)))
1413simpld 498 . . . 4 ((𝜑𝐺dom DProd 𝑆) → 𝐺dom DProd (𝑆𝐷))
1510, 14jca 515 . . 3 ((𝜑𝐺dom DProd 𝑆) → (𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)))
16 dprdsplit.i . . . . 5 (𝜑 → (𝐶𝐷) = ∅)
1716adantr 484 . . . 4 ((𝜑𝐺dom DProd 𝑆) → (𝐶𝐷) = ∅)
18 dmdprdsplit.z . . . 4 𝑍 = (Cntz‘𝐺)
191, 4, 8, 12, 17, 18dprdcntz2 19160 . . 3 ((𝜑𝐺dom DProd 𝑆) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
20 dmdprdsplit.0 . . . 4 0 = (0g𝐺)
211, 4, 8, 12, 17, 20dprddisj2 19161 . . 3 ((𝜑𝐺dom DProd 𝑆) → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
2215, 19, 213jca 1125 . 2 ((𝜑𝐺dom DProd 𝑆) → ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 }))
232adantr 484 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → 𝑆:𝐼⟶(SubGrp‘𝐺))
2416adantr 484 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → (𝐶𝐷) = ∅)
256adantr 484 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → 𝐼 = (𝐶𝐷))
26 simpr1l 1227 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → 𝐺dom DProd (𝑆𝐶))
27 simpr1r 1228 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → 𝐺dom DProd (𝑆𝐷))
28 simpr2 1192 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))))
29 simpr3 1193 . . 3 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })
3023, 24, 25, 18, 20, 26, 27, 28, 29dmdprdsplit2 19168 . 2 ((𝜑 ∧ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })) → 𝐺dom DProd 𝑆)
3122, 30impbida 800 1 (𝜑 → (𝐺dom DProd 𝑆 ↔ ((𝐺dom DProd (𝑆𝐶) ∧ 𝐺dom DProd (𝑆𝐷)) ∧ (𝐺 DProd (𝑆𝐶)) ⊆ (𝑍‘(𝐺 DProd (𝑆𝐷))) ∧ ((𝐺 DProd (𝑆𝐶)) ∩ (𝐺 DProd (𝑆𝐷))) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  cun 3917  cin 3918  wss 3919  c0 4276  {csn 4550   class class class wbr 5052  dom cdm 5542  cres 5544  wf 6339  cfv 6343  (class class class)co 7149  0gc0g 16713  SubGrpcsubg 18273  Cntzccntz 18445   DProd cdprd 19115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7403  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-ixp 8458  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-fsupp 8831  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-n0 11895  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-seq 13374  df-hash 13696  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-gim 18399  df-cntz 18447  df-oppg 18474  df-lsm 18761  df-cmn 18908  df-dprd 19117
This theorem is referenced by:  dprdsplit  19170  dmdprdpr  19171  dpjcntz  19174  dpjdisj  19175
  Copyright terms: Public domain W3C validator