Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkccat Structured version   Visualization version   GIF version

Theorem clwwlkccat 27767
 Description: The concatenation of two words representing closed walks anchored at the same vertex represents a closed walk. The resulting walk is a "double loop", starting at the common vertex, coming back to the common vertex by the first walk, following the second walk and finally coming back to the common vertex again. (Contributed by AV, 23-Apr-2022.)
Assertion
Ref Expression
clwwlkccat ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))

Proof of Theorem clwwlkccat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1l 1193 . . . . . 6 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → 𝐴 ∈ Word (Vtx‘𝐺))
2 simp1l 1193 . . . . . 6 (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → 𝐵 ∈ Word (Vtx‘𝐺))
3 ccatcl 13925 . . . . . 6 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺))
41, 2, 3syl2an 597 . . . . 5 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺))
5 ccat0 13928 . . . . . . . . . . 11 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → ((𝐴 ++ 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
65adantlr 713 . . . . . . . . . 10 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → ((𝐴 ++ 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅)))
7 simpr 487 . . . . . . . . . 10 ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐵 = ∅)
86, 7syl6bi 255 . . . . . . . . 9 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → ((𝐴 ++ 𝐵) = ∅ → 𝐵 = ∅))
98necon3d 3037 . . . . . . . 8 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (𝐵 ≠ ∅ → (𝐴 ++ 𝐵) ≠ ∅))
109impr 457 . . . . . . 7 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (𝐴 ++ 𝐵) ≠ ∅)
11103ad2antr1 1184 . . . . . 6 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (𝐴 ++ 𝐵) ≠ ∅)
12113ad2antl1 1181 . . . . 5 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (𝐴 ++ 𝐵) ≠ ∅)
134, 12jca 514 . . . 4 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → ((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅))
14133adant3 1128 . . 3 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅))
15 clwwlkccatlem 27766 . . 3 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺))
16 simpl1l 1220 . . . . . . 7 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 𝐴 ∈ Word (Vtx‘𝐺))
17 simpr1l 1226 . . . . . . 7 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 𝐵 ∈ Word (Vtx‘𝐺))
18 simpr1r 1227 . . . . . . 7 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 𝐵 ≠ ∅)
19 lswccatn0lsw 13944 . . . . . . 7 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
2016, 17, 18, 19syl3anc 1367 . . . . . 6 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
21203adant3 1128 . . . . 5 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵))
22 hashgt0 13748 . . . . . . . . . 10 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → 0 < (♯‘𝐴))
23223ad2ant1 1129 . . . . . . . . 9 (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → 0 < (♯‘𝐴))
2423adantr 483 . . . . . . . 8 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 0 < (♯‘𝐴))
25 ccatfv0 13936 . . . . . . . 8 ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
2616, 17, 24, 25syl3anc 1367 . . . . . . 7 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
27263adant3 1128 . . . . . 6 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0))
28 simp3 1134 . . . . . 6 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0))
2927, 28eqtrd 2856 . . . . 5 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵)‘0) = (𝐵‘0))
3021, 29preq12d 4676 . . . 4 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} = {(lastS‘𝐵), (𝐵‘0)})
31 simp23 1204 . . . 4 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))
3230, 31eqeltrd 2913 . . 3 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} ∈ (Edg‘𝐺))
3314, 15, 323jca 1124 . 2 ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} ∈ (Edg‘𝐺)))
34 eqid 2821 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
35 eqid 2821 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
3634, 35isclwwlk 27761 . . 3 (𝐴 ∈ (ClWWalks‘𝐺) ↔ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)))
3734, 35isclwwlk 27761 . . 3 (𝐵 ∈ (ClWWalks‘𝐺) ↔ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)))
38 biid 263 . . 3 ((𝐴‘0) = (𝐵‘0) ↔ (𝐴‘0) = (𝐵‘0))
3936, 37, 383anbi123i 1151 . 2 ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) ↔ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝐴) − 1)){(𝐴𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈ (0..^((♯‘𝐵) − 1)){(𝐵𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)))
4034, 35isclwwlk 27761 . 2 ((𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺) ↔ (((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} ∈ (Edg‘𝐺)))
4133, 39, 403imtr4i 294 1 ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110   ≠ wne 3016  ∀wral 3138  ∅c0 4290  {cpr 4568   class class class wbr 5065  ‘cfv 6354  (class class class)co 7155  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674   − cmin 10869  ..^cfzo 13032  ♯chash 13689  Word cword 13860  lastSclsw 13913   ++ cconcat 13921  Vtxcvtx 26780  Edgcedg 26831  ClWWalkscclwwlk 27758 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-xnn0 11967  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-hash 13690  df-word 13861  df-lsw 13914  df-concat 13922  df-clwwlk 27759 This theorem is referenced by:  clwwlknccat  27841
 Copyright terms: Public domain W3C validator