Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . . . . 6
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → 𝐴 ∈ Word (Vtx‘𝐺)) |
2 | | simp1l 1196 |
. . . . . 6
⊢ (((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) → 𝐵 ∈ Word (Vtx‘𝐺)) |
3 | | ccatcl 14277 |
. . . . . 6
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺)) |
4 | 1, 2, 3 | syl2an 596 |
. . . . 5
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺)) |
5 | | ccat0 14280 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → ((𝐴 ++ 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
6 | 5 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → ((𝐴 ++ 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 = ∅))) |
7 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → 𝐵 = ∅) |
8 | 6, 7 | syl6bi 252 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → ((𝐴 ++ 𝐵) = ∅ → 𝐵 = ∅)) |
9 | 8 | necon3d 2964 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∈ Word (Vtx‘𝐺)) → (𝐵 ≠ ∅ → (𝐴 ++ 𝐵) ≠ ∅)) |
10 | 9 | impr 455 |
. . . . . . 7
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅)) → (𝐴 ++ 𝐵) ≠ ∅) |
11 | 10 | 3ad2antr1 1187 |
. . . . . 6
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (𝐴 ++ 𝐵) ≠ ∅) |
12 | 11 | 3ad2antl1 1184 |
. . . . 5
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (𝐴 ++ 𝐵) ≠ ∅) |
13 | 4, 12 | jca 512 |
. . . 4
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → ((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅)) |
14 | 13 | 3adant3 1131 |
. . 3
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅)) |
15 | | clwwlkccatlem 28353 |
. . 3
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ∀𝑖 ∈ (0..^((♯‘(𝐴 ++ 𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) |
16 | | simpl1l 1223 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 𝐴 ∈ Word (Vtx‘𝐺)) |
17 | | simpr1l 1229 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 𝐵 ∈ Word (Vtx‘𝐺)) |
18 | | simpr1r 1230 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 𝐵 ≠ ∅) |
19 | | lswccatn0lsw 14296 |
. . . . . . 7
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵)) |
20 | 16, 17, 18, 19 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵)) |
21 | 20 | 3adant3 1131 |
. . . . 5
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (lastS‘(𝐴 ++ 𝐵)) = (lastS‘𝐵)) |
22 | | hashgt0 14103 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) → 0 <
(♯‘𝐴)) |
23 | 22 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) → 0 <
(♯‘𝐴)) |
24 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → 0 <
(♯‘𝐴)) |
25 | | ccatfv0 14288 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ∈ Word (Vtx‘𝐺) ∧ 0 < (♯‘𝐴)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
26 | 16, 17, 24, 25 | syl3anc 1370 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
27 | 26 | 3adant3 1131 |
. . . . . 6
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵)‘0) = (𝐴‘0)) |
28 | | simp3 1137 |
. . . . . 6
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴‘0) = (𝐵‘0)) |
29 | 27, 28 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → ((𝐴 ++ 𝐵)‘0) = (𝐵‘0)) |
30 | 21, 29 | preq12d 4677 |
. . . 4
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} = {(lastS‘𝐵), (𝐵‘0)}) |
31 | | simp23 1207 |
. . . 4
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) |
32 | 30, 31 | eqeltrd 2839 |
. . 3
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} ∈ (Edg‘𝐺)) |
33 | 14, 15, 32 | 3jca 1127 |
. 2
⊢ ((((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0)) → (((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘(𝐴 ++
𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} ∈ (Edg‘𝐺))) |
34 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
35 | | eqid 2738 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
36 | 34, 35 | isclwwlk 28348 |
. . 3
⊢ (𝐴 ∈ (ClWWalks‘𝐺) ↔ ((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺))) |
37 | 34, 35 | isclwwlk 28348 |
. . 3
⊢ (𝐵 ∈ (ClWWalks‘𝐺) ↔ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺))) |
38 | | biid 260 |
. . 3
⊢ ((𝐴‘0) = (𝐵‘0) ↔ (𝐴‘0) = (𝐵‘0)) |
39 | 36, 37, 38 | 3anbi123i 1154 |
. 2
⊢ ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) ↔ (((𝐴 ∈ Word (Vtx‘𝐺) ∧ 𝐴 ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘𝐴)
− 1)){(𝐴‘𝑖), (𝐴‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐴), (𝐴‘0)} ∈ (Edg‘𝐺)) ∧ ((𝐵 ∈ Word (Vtx‘𝐺) ∧ 𝐵 ≠ ∅) ∧ ∀𝑗 ∈
(0..^((♯‘𝐵)
− 1)){(𝐵‘𝑗), (𝐵‘(𝑗 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝐵), (𝐵‘0)} ∈ (Edg‘𝐺)) ∧ (𝐴‘0) = (𝐵‘0))) |
40 | 34, 35 | isclwwlk 28348 |
. 2
⊢ ((𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺) ↔ (((𝐴 ++ 𝐵) ∈ Word (Vtx‘𝐺) ∧ (𝐴 ++ 𝐵) ≠ ∅) ∧ ∀𝑖 ∈
(0..^((♯‘(𝐴 ++
𝐵)) − 1)){((𝐴 ++ 𝐵)‘𝑖), ((𝐴 ++ 𝐵)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘(𝐴 ++ 𝐵)), ((𝐴 ++ 𝐵)‘0)} ∈ (Edg‘𝐺))) |
41 | 33, 39, 40 | 3imtr4i 292 |
1
⊢ ((𝐴 ∈ (ClWWalks‘𝐺) ∧ 𝐵 ∈ (ClWWalks‘𝐺) ∧ (𝐴‘0) = (𝐵‘0)) → (𝐴 ++ 𝐵) ∈ (ClWWalks‘𝐺)) |