Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . . . . 6
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β π΄ β Word (VtxβπΊ)) |
2 | | simp1l 1196 |
. . . . . 6
β’ (((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β π΅ β Word (VtxβπΊ)) |
3 | | ccatcl 14529 |
. . . . . 6
β’ ((π΄ β Word (VtxβπΊ) β§ π΅ β Word (VtxβπΊ)) β (π΄ ++ π΅) β Word (VtxβπΊ)) |
4 | 1, 2, 3 | syl2an 595 |
. . . . 5
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β (π΄ ++ π΅) β Word (VtxβπΊ)) |
5 | | ccat0 14531 |
. . . . . . . . . . 11
β’ ((π΄ β Word (VtxβπΊ) β§ π΅ β Word (VtxβπΊ)) β ((π΄ ++ π΅) = β
β (π΄ = β
β§ π΅ = β
))) |
6 | 5 | adantlr 712 |
. . . . . . . . . 10
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ π΅ β Word (VtxβπΊ)) β ((π΄ ++ π΅) = β
β (π΄ = β
β§ π΅ = β
))) |
7 | | simpr 484 |
. . . . . . . . . 10
β’ ((π΄ = β
β§ π΅ = β
) β π΅ = β
) |
8 | 6, 7 | syl6bi 253 |
. . . . . . . . 9
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ π΅ β Word (VtxβπΊ)) β ((π΄ ++ π΅) = β
β π΅ = β
)) |
9 | 8 | necon3d 2960 |
. . . . . . . 8
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ π΅ β Word (VtxβπΊ)) β (π΅ β β
β (π΄ ++ π΅) β β
)) |
10 | 9 | impr 454 |
. . . . . . 7
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ (π΅ β Word (VtxβπΊ) β§ π΅ β β
)) β (π΄ ++ π΅) β β
) |
11 | 10 | 3ad2antr1 1187 |
. . . . . 6
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β (π΄ ++ π΅) β β
) |
12 | 11 | 3ad2antl1 1184 |
. . . . 5
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β (π΄ ++ π΅) β β
) |
13 | 4, 12 | jca 511 |
. . . 4
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β ((π΄ ++ π΅) β Word (VtxβπΊ) β§ (π΄ ++ π΅) β β
)) |
14 | 13 | 3adant3 1131 |
. . 3
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β ((π΄ ++ π΅) β Word (VtxβπΊ) β§ (π΄ ++ π΅) β β
)) |
15 | | clwwlkccatlem 29510 |
. . 3
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β βπ β (0..^((β―β(π΄ ++ π΅)) β 1)){((π΄ ++ π΅)βπ), ((π΄ ++ π΅)β(π + 1))} β (EdgβπΊ)) |
16 | | simpl1l 1223 |
. . . . . . 7
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β π΄ β Word (VtxβπΊ)) |
17 | | simpr1l 1229 |
. . . . . . 7
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β π΅ β Word (VtxβπΊ)) |
18 | | simpr1r 1230 |
. . . . . . 7
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β π΅ β β
) |
19 | | lswccatn0lsw 14546 |
. . . . . . 7
β’ ((π΄ β Word (VtxβπΊ) β§ π΅ β Word (VtxβπΊ) β§ π΅ β β
) β (lastSβ(π΄ ++ π΅)) = (lastSβπ΅)) |
20 | 16, 17, 18, 19 | syl3anc 1370 |
. . . . . 6
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β (lastSβ(π΄ ++ π΅)) = (lastSβπ΅)) |
21 | 20 | 3adant3 1131 |
. . . . 5
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β (lastSβ(π΄ ++ π΅)) = (lastSβπ΅)) |
22 | | hashgt0 14353 |
. . . . . . . . . 10
β’ ((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β 0 <
(β―βπ΄)) |
23 | 22 | 3ad2ant1 1132 |
. . . . . . . . 9
β’ (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β 0 <
(β―βπ΄)) |
24 | 23 | adantr 480 |
. . . . . . . 8
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β 0 <
(β―βπ΄)) |
25 | | ccatfv0 14538 |
. . . . . . . 8
β’ ((π΄ β Word (VtxβπΊ) β§ π΅ β Word (VtxβπΊ) β§ 0 < (β―βπ΄)) β ((π΄ ++ π΅)β0) = (π΄β0)) |
26 | 16, 17, 24, 25 | syl3anc 1370 |
. . . . . . 7
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) β ((π΄ ++ π΅)β0) = (π΄β0)) |
27 | 26 | 3adant3 1131 |
. . . . . 6
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β ((π΄ ++ π΅)β0) = (π΄β0)) |
28 | | simp3 1137 |
. . . . . 6
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β (π΄β0) = (π΅β0)) |
29 | 27, 28 | eqtrd 2771 |
. . . . 5
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β ((π΄ ++ π΅)β0) = (π΅β0)) |
30 | 21, 29 | preq12d 4745 |
. . . 4
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β {(lastSβ(π΄ ++ π΅)), ((π΄ ++ π΅)β0)} = {(lastSβπ΅), (π΅β0)}) |
31 | | simp23 1207 |
. . . 4
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) |
32 | 30, 31 | eqeltrd 2832 |
. . 3
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β {(lastSβ(π΄ ++ π΅)), ((π΄ ++ π΅)β0)} β (EdgβπΊ)) |
33 | 14, 15, 32 | 3jca 1127 |
. 2
β’ ((((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0)) β (((π΄ ++ π΅) β Word (VtxβπΊ) β§ (π΄ ++ π΅) β β
) β§ βπ β
(0..^((β―β(π΄ ++
π΅)) β 1)){((π΄ ++ π΅)βπ), ((π΄ ++ π΅)β(π + 1))} β (EdgβπΊ) β§ {(lastSβ(π΄ ++ π΅)), ((π΄ ++ π΅)β0)} β (EdgβπΊ))) |
34 | | eqid 2731 |
. . . 4
β’
(VtxβπΊ) =
(VtxβπΊ) |
35 | | eqid 2731 |
. . . 4
β’
(EdgβπΊ) =
(EdgβπΊ) |
36 | 34, 35 | isclwwlk 29505 |
. . 3
β’ (π΄ β (ClWWalksβπΊ) β ((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ))) |
37 | 34, 35 | isclwwlk 29505 |
. . 3
β’ (π΅ β (ClWWalksβπΊ) β ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ))) |
38 | | biid 261 |
. . 3
β’ ((π΄β0) = (π΅β0) β (π΄β0) = (π΅β0)) |
39 | 36, 37, 38 | 3anbi123i 1154 |
. 2
β’ ((π΄ β (ClWWalksβπΊ) β§ π΅ β (ClWWalksβπΊ) β§ (π΄β0) = (π΅β0)) β (((π΄ β Word (VtxβπΊ) β§ π΄ β β
) β§ βπ β
(0..^((β―βπ΄)
β 1)){(π΄βπ), (π΄β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΄), (π΄β0)} β (EdgβπΊ)) β§ ((π΅ β Word (VtxβπΊ) β§ π΅ β β
) β§ βπ β
(0..^((β―βπ΅)
β 1)){(π΅βπ), (π΅β(π + 1))} β (EdgβπΊ) β§ {(lastSβπ΅), (π΅β0)} β (EdgβπΊ)) β§ (π΄β0) = (π΅β0))) |
40 | 34, 35 | isclwwlk 29505 |
. 2
β’ ((π΄ ++ π΅) β (ClWWalksβπΊ) β (((π΄ ++ π΅) β Word (VtxβπΊ) β§ (π΄ ++ π΅) β β
) β§ βπ β
(0..^((β―β(π΄ ++
π΅)) β 1)){((π΄ ++ π΅)βπ), ((π΄ ++ π΅)β(π + 1))} β (EdgβπΊ) β§ {(lastSβ(π΄ ++ π΅)), ((π΄ ++ π΅)β0)} β (EdgβπΊ))) |
41 | 33, 39, 40 | 3imtr4i 292 |
1
β’ ((π΄ β (ClWWalksβπΊ) β§ π΅ β (ClWWalksβπΊ) β§ (π΄β0) = (π΅β0)) β (π΄ ++ π΅) β (ClWWalksβπΊ)) |