| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8079 poxp3 8086 oppccatid 17627 subccatid 17755 setccatid 17993 catccatid 18015 estrccatid 18040 xpccatid 18096 gsmsymgreqlem1 19344 dmdprdsplit 19963 neiptopnei 23048 neitr 23096 neitx 23523 tx1stc 23566 utop3cls 24167 metustsym 24471 ax5seg 28918 clwwlkccat 29972 3pthdlem1 30146 esumpcvgval 34112 esum2d 34127 ifscgr 36109 brofs2 36142 brifs2 36143 btwnconn1lem8 36159 btwnconn1lem12 36163 seglecgr12im 36175 unbdqndv2 36576 lhp2lt 40120 cdlemd1 40317 cdleme3b 40348 cdleme3c 40349 cdleme3e 40351 cdlemf2 40681 cdlemg4c 40731 cdlemn11pre 41329 dihmeetlem12N 41437 stoweidlem60 46182 ssccatid 49197 isthincd2 49562 mndtccatid 49712 |
| Copyright terms: Public domain | W3C validator |