| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8073 poxp3 8080 oppccatid 17622 subccatid 17750 setccatid 17988 catccatid 18010 estrccatid 18035 xpccatid 18091 gsmsymgreqlem1 19340 dmdprdsplit 19959 neiptopnei 23045 neitr 23093 neitx 23520 tx1stc 23563 utop3cls 24164 metustsym 24468 ax5seg 28914 clwwlkccat 29965 3pthdlem1 30139 esumpcvgval 34086 esum2d 34101 ifscgr 36077 brofs2 36110 brifs2 36111 btwnconn1lem8 36127 btwnconn1lem12 36131 seglecgr12im 36143 unbdqndv2 36544 lhp2lt 40039 cdlemd1 40236 cdleme3b 40267 cdleme3c 40268 cdleme3e 40270 cdlemf2 40600 cdlemg4c 40650 cdlemn11pre 41248 dihmeetlem12N 41356 stoweidlem60 46097 ssccatid 49103 isthincd2 49468 mndtccatid 49618 |
| Copyright terms: Public domain | W3C validator |