| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8142 poxp3 8149 oppccatid 17731 subccatid 17859 setccatid 18097 catccatid 18119 estrccatid 18144 xpccatid 18200 gsmsymgreqlem1 19411 dmdprdsplit 20030 neiptopnei 23070 neitr 23118 neitx 23545 tx1stc 23588 utop3cls 24190 metustsym 24494 ax5seg 28917 clwwlkccat 29971 3pthdlem1 30145 esumpcvgval 34109 esum2d 34124 ifscgr 36062 brofs2 36095 brifs2 36096 btwnconn1lem8 36112 btwnconn1lem12 36116 seglecgr12im 36128 unbdqndv2 36529 lhp2lt 40020 cdlemd1 40217 cdleme3b 40248 cdleme3c 40249 cdleme3e 40251 cdlemf2 40581 cdlemg4c 40631 cdlemn11pre 41229 dihmeetlem12N 41337 stoweidlem60 46089 ssccatid 49039 isthincd2 49323 mndtccatid 49464 |
| Copyright terms: Public domain | W3C validator |