![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 768 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr1 1187 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: poxp2 8132 poxp3 8139 oppccatid 17670 subccatid 17801 setccatid 18039 catccatid 18061 estrccatid 18088 xpccatid 18145 gsmsymgreqlem1 19340 dmdprdsplit 19959 neiptopnei 22857 neitr 22905 neitx 23332 tx1stc 23375 utop3cls 23977 metustsym 24285 ax5seg 28464 clwwlkccat 29511 3pthdlem1 29685 esumpcvgval 33375 esum2d 33390 ifscgr 35321 brofs2 35354 brifs2 35355 btwnconn1lem8 35371 btwnconn1lem12 35375 seglecgr12im 35387 unbdqndv2 35691 lhp2lt 39176 cdlemd1 39373 cdleme3b 39404 cdleme3c 39405 cdleme3e 39407 cdlemf2 39737 cdlemg4c 39787 cdlemn11pre 40385 dihmeetlem12N 40493 stoweidlem60 45075 isthincd2 47746 mndtccatid 47801 |
Copyright terms: Public domain | W3C validator |