![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2antr1 1188 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: poxp2 8184 poxp3 8191 oppccatid 17779 subccatid 17910 setccatid 18151 catccatid 18173 estrccatid 18200 xpccatid 18257 gsmsymgreqlem1 19472 dmdprdsplit 20091 neiptopnei 23161 neitr 23209 neitx 23636 tx1stc 23679 utop3cls 24281 metustsym 24589 ax5seg 28971 clwwlkccat 30022 3pthdlem1 30196 esumpcvgval 34042 esum2d 34057 ifscgr 36008 brofs2 36041 brifs2 36042 btwnconn1lem8 36058 btwnconn1lem12 36062 seglecgr12im 36074 unbdqndv2 36477 lhp2lt 39958 cdlemd1 40155 cdleme3b 40186 cdleme3c 40187 cdleme3e 40189 cdlemf2 40519 cdlemg4c 40569 cdlemn11pre 41167 dihmeetlem12N 41275 stoweidlem60 45981 isthincd2 48705 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |