| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8122 poxp3 8129 oppccatid 17680 subccatid 17808 setccatid 18046 catccatid 18068 estrccatid 18093 xpccatid 18149 gsmsymgreqlem1 19360 dmdprdsplit 19979 neiptopnei 23019 neitr 23067 neitx 23494 tx1stc 23537 utop3cls 24139 metustsym 24443 ax5seg 28865 clwwlkccat 29919 3pthdlem1 30093 esumpcvgval 34068 esum2d 34083 ifscgr 36032 brofs2 36065 brifs2 36066 btwnconn1lem8 36082 btwnconn1lem12 36086 seglecgr12im 36098 unbdqndv2 36499 lhp2lt 39995 cdlemd1 40192 cdleme3b 40223 cdleme3c 40224 cdleme3e 40226 cdlemf2 40556 cdlemg4c 40606 cdlemn11pre 41204 dihmeetlem12N 41312 stoweidlem60 46058 ssccatid 49061 isthincd2 49426 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |