| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpr1l | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpr1l | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 770 | . 2 ⊢ ((𝜏 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
| 2 | 1 | 3ad2antr1 1189 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8125 poxp3 8132 oppccatid 17687 subccatid 17815 setccatid 18053 catccatid 18075 estrccatid 18100 xpccatid 18156 gsmsymgreqlem1 19367 dmdprdsplit 19986 neiptopnei 23026 neitr 23074 neitx 23501 tx1stc 23544 utop3cls 24146 metustsym 24450 ax5seg 28872 clwwlkccat 29926 3pthdlem1 30100 esumpcvgval 34075 esum2d 34090 ifscgr 36039 brofs2 36072 brifs2 36073 btwnconn1lem8 36089 btwnconn1lem12 36093 seglecgr12im 36105 unbdqndv2 36506 lhp2lt 40002 cdlemd1 40199 cdleme3b 40230 cdleme3c 40231 cdleme3e 40233 cdlemf2 40563 cdlemg4c 40613 cdlemn11pre 41211 dihmeetlem12N 41319 stoweidlem60 46065 ssccatid 49065 isthincd2 49430 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |