MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsmsymgreqlem1 Structured version   Visualization version   GIF version

Theorem gsmsymgreqlem1 19342
Description: Lemma 1 for gsmsymgreq 19344. (Contributed by AV, 26-Jan-2019.)
Hypotheses
Ref Expression
gsmsymgrfix.s 𝑆 = (SymGrp‘𝑁)
gsmsymgrfix.b 𝐵 = (Base‘𝑆)
gsmsymgreq.z 𝑍 = (SymGrp‘𝑀)
gsmsymgreq.p 𝑃 = (Base‘𝑍)
gsmsymgreq.i 𝐼 = (𝑁𝑀)
Assertion
Ref Expression
gsmsymgreqlem1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝐽) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝐽)))
Distinct variable groups:   𝑛,𝐼   𝑛,𝑋   𝐶,𝑛   𝑛,𝐽   𝑅,𝑛   𝑆,𝑛   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝐵(𝑛)   𝑃(𝑛)   𝑀(𝑛)   𝑁(𝑛)

Proof of Theorem gsmsymgreqlem1
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑋 ∈ Word 𝐵𝐶𝐵) → 𝐶𝐵)
2 simpr 484 . . . . . . . 8 ((𝑌 ∈ Word 𝑃𝑅𝑃) → 𝑅𝑃)
31, 2anim12i 613 . . . . . . 7 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃)) → (𝐶𝐵𝑅𝑃))
433adant3 1132 . . . . . 6 (((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝐶𝐵𝑅𝑃))
54adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (𝐶𝐵𝑅𝑃))
65adantr 480 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝐶𝐵𝑅𝑃))
7 simpll3 1215 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → 𝐽𝐼)
8 simpr 484 . . . . . 6 ((∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽)) → (𝐶𝐽) = (𝑅𝐽))
98adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝐶𝐽) = (𝑅𝐽))
10 simprl 770 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))
117, 9, 103jca 1128 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝐽𝐼 ∧ (𝐶𝐽) = (𝑅𝐽) ∧ ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)))
12 gsmsymgrfix.s . . . . 5 𝑆 = (SymGrp‘𝑁)
13 gsmsymgrfix.b . . . . 5 𝐵 = (Base‘𝑆)
14 gsmsymgreq.z . . . . 5 𝑍 = (SymGrp‘𝑀)
15 gsmsymgreq.p . . . . 5 𝑃 = (Base‘𝑍)
16 gsmsymgreq.i . . . . 5 𝐼 = (𝑁𝑀)
1712, 13, 14, 15, 16fvcosymgeq 19341 . . . 4 ((𝐶𝐵𝑅𝑃) → ((𝐽𝐼 ∧ (𝐶𝐽) = (𝑅𝐽) ∧ ∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑆 Σg 𝑋) ∘ 𝐶)‘𝐽) = (((𝑍 Σg 𝑌) ∘ 𝑅)‘𝐽)))
186, 11, 17sylc 65 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (((𝑆 Σg 𝑋) ∘ 𝐶)‘𝐽) = (((𝑍 Σg 𝑌) ∘ 𝑅)‘𝐽))
19 simpl1 1192 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑁 ∈ Fin)
20 simpr1l 1231 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑋 ∈ Word 𝐵)
21 simpr1r 1232 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝐶𝐵)
2219, 20, 213jca 1128 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (𝑁 ∈ Fin ∧ 𝑋 ∈ Word 𝐵𝐶𝐵))
2322adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝑁 ∈ Fin ∧ 𝑋 ∈ Word 𝐵𝐶𝐵))
2412, 13gsumccatsymgsn 19338 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑋 ∈ Word 𝐵𝐶𝐵) → (𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩)) = ((𝑆 Σg 𝑋) ∘ 𝐶))
2523, 24syl 17 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩)) = ((𝑆 Σg 𝑋) ∘ 𝐶))
2625fveq1d 6824 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝐽) = (((𝑆 Σg 𝑋) ∘ 𝐶)‘𝐽))
27 simpl2 1193 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑀 ∈ Fin)
28 simpr2l 1233 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑌 ∈ Word 𝑃)
29 simpr2r 1234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑅𝑃)
3027, 28, 293jca 1128 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (𝑀 ∈ Fin ∧ 𝑌 ∈ Word 𝑃𝑅𝑃))
3130adantr 480 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝑀 ∈ Fin ∧ 𝑌 ∈ Word 𝑃𝑅𝑃))
3214, 15gsumccatsymgsn 19338 . . . . 5 ((𝑀 ∈ Fin ∧ 𝑌 ∈ Word 𝑃𝑅𝑃) → (𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩)) = ((𝑍 Σg 𝑌) ∘ 𝑅))
3331, 32syl 17 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → (𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩)) = ((𝑍 Σg 𝑌) ∘ 𝑅))
3433fveq1d 6824 . . 3 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝐽) = (((𝑍 Σg 𝑌) ∘ 𝑅)‘𝐽))
3518, 26, 343eqtr4d 2776 . 2 ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽))) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝐽) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝐽))
3635ex 412 1 (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽𝐼) ∧ ((𝑋 ∈ Word 𝐵𝐶𝐵) ∧ (𝑌 ∈ Word 𝑃𝑅𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑛𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶𝐽) = (𝑅𝐽)) → ((𝑆 Σg (𝑋 ++ ⟨“𝐶”⟩))‘𝐽) = ((𝑍 Σg (𝑌 ++ ⟨“𝑅”⟩))‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cin 3896  ccom 5618  cfv 6481  (class class class)co 7346  Fincfn 8869  chash 14237  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14503  Basecbs 17120   Σg cgsu 17344  SymGrpcsymg 19281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-symg 19282
This theorem is referenced by:  gsmsymgreqlem2  19343
  Copyright terms: Public domain W3C validator