Proof of Theorem gsmsymgreqlem1
Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
2 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) → 𝑅 ∈ 𝑃) |
3 | 1, 2 | anim12i 612 |
. . . . . . 7
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃)) → (𝐶 ∈ 𝐵 ∧ 𝑅 ∈ 𝑃)) |
4 | 3 | 3adant3 1130 |
. . . . . 6
⊢ (((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌)) → (𝐶 ∈ 𝐵 ∧ 𝑅 ∈ 𝑃)) |
5 | 4 | adantl 481 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (𝐶 ∈ 𝐵 ∧ 𝑅 ∈ 𝑃)) |
6 | 5 | adantr 480 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝐶 ∈ 𝐵 ∧ 𝑅 ∈ 𝑃)) |
7 | | simpll3 1212 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → 𝐽 ∈ 𝐼) |
8 | | simpr 484 |
. . . . . 6
⊢
((∀𝑛 ∈
𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽)) → (𝐶‘𝐽) = (𝑅‘𝐽)) |
9 | 8 | adantl 481 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝐶‘𝐽) = (𝑅‘𝐽)) |
10 | | simprl 767 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) |
11 | 7, 9, 10 | 3jca 1126 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝐽 ∈ 𝐼 ∧ (𝐶‘𝐽) = (𝑅‘𝐽) ∧ ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛))) |
12 | | gsmsymgrfix.s |
. . . . 5
⊢ 𝑆 = (SymGrp‘𝑁) |
13 | | gsmsymgrfix.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑆) |
14 | | gsmsymgreq.z |
. . . . 5
⊢ 𝑍 = (SymGrp‘𝑀) |
15 | | gsmsymgreq.p |
. . . . 5
⊢ 𝑃 = (Base‘𝑍) |
16 | | gsmsymgreq.i |
. . . . 5
⊢ 𝐼 = (𝑁 ∩ 𝑀) |
17 | 12, 13, 14, 15, 16 | fvcosymgeq 18952 |
. . . 4
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑅 ∈ 𝑃) → ((𝐽 ∈ 𝐼 ∧ (𝐶‘𝐽) = (𝑅‘𝐽) ∧ ∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛)) → (((𝑆 Σg 𝑋) ∘ 𝐶)‘𝐽) = (((𝑍 Σg 𝑌) ∘ 𝑅)‘𝐽))) |
18 | 6, 11, 17 | sylc 65 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (((𝑆 Σg 𝑋) ∘ 𝐶)‘𝐽) = (((𝑍 Σg 𝑌) ∘ 𝑅)‘𝐽)) |
19 | | simpl1 1189 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑁 ∈ Fin) |
20 | | simpr1l 1228 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑋 ∈ Word 𝐵) |
21 | | simpr1r 1229 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝐶 ∈ 𝐵) |
22 | 19, 20, 21 | 3jca 1126 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (𝑁 ∈ Fin ∧ 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵)) |
23 | 22 | adantr 480 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝑁 ∈ Fin ∧ 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵)) |
24 | 12, 13 | gsumccatsymgsn 18949 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) → (𝑆 Σg (𝑋 ++ 〈“𝐶”〉)) = ((𝑆 Σg
𝑋) ∘ 𝐶)) |
25 | 23, 24 | syl 17 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝑆 Σg (𝑋 ++ 〈“𝐶”〉)) = ((𝑆 Σg
𝑋) ∘ 𝐶)) |
26 | 25 | fveq1d 6758 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝐽) = (((𝑆 Σg 𝑋) ∘ 𝐶)‘𝐽)) |
27 | | simpl2 1190 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑀 ∈ Fin) |
28 | | simpr2l 1230 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑌 ∈ Word 𝑃) |
29 | | simpr2r 1231 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → 𝑅 ∈ 𝑃) |
30 | 27, 28, 29 | 3jca 1126 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → (𝑀 ∈ Fin ∧ 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃)) |
31 | 30 | adantr 480 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝑀 ∈ Fin ∧ 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃)) |
32 | 14, 15 | gsumccatsymgsn 18949 |
. . . . 5
⊢ ((𝑀 ∈ Fin ∧ 𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) → (𝑍 Σg (𝑌 ++ 〈“𝑅”〉)) = ((𝑍 Σg
𝑌) ∘ 𝑅)) |
33 | 31, 32 | syl 17 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → (𝑍 Σg (𝑌 ++ 〈“𝑅”〉)) = ((𝑍 Σg
𝑌) ∘ 𝑅)) |
34 | 33 | fveq1d 6758 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝐽) = (((𝑍 Σg 𝑌) ∘ 𝑅)‘𝐽)) |
35 | 18, 26, 34 | 3eqtr4d 2788 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) ∧ (∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽))) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝐽) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝐽)) |
36 | 35 | ex 412 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ∧ 𝐽 ∈ 𝐼) ∧ ((𝑋 ∈ Word 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑌 ∈ Word 𝑃 ∧ 𝑅 ∈ 𝑃) ∧ (♯‘𝑋) = (♯‘𝑌))) → ((∀𝑛 ∈ 𝐼 ((𝑆 Σg 𝑋)‘𝑛) = ((𝑍 Σg 𝑌)‘𝑛) ∧ (𝐶‘𝐽) = (𝑅‘𝐽)) → ((𝑆 Σg (𝑋 ++ 〈“𝐶”〉))‘𝐽) = ((𝑍 Σg (𝑌 ++ 〈“𝑅”〉))‘𝐽))) |