| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6083 frfi 9169 wemappo 9435 ttrclss 9610 ttrclselem2 9616 iccsplit 13382 ccatswrd 14573 pfxccat3 14638 modfsummods 15697 pcdvdstr 16785 vdwlem12 16901 cshwsidrepswmod0 17003 iscatd2 17584 oppccomfpropd 17630 initoeu2lem0 17917 resssetc 17996 resscatc 18013 yonedalem4c 18180 mod1ile 18396 mod2ile 18397 prdssgrpd 18638 prdsmndd 18675 grprcan 18883 mulgnn0dir 19014 mulgdir 19016 mulgass 19021 mulgnn0di 19735 mulgdi 19736 dprd2da 19954 submomnd 20042 ogrpaddltbi 20049 lmodprop2d 20855 lssintcl 20895 prdslmodd 20900 islmhm2 20970 islbs2 21089 islbs3 21090 dmatmul 22410 mdetmul 22536 restopnb 23088 iunconn 23341 1stcelcls 23374 blsscls2 24417 stdbdbl 24430 xrsblre 24725 icccmplem2 24737 itg1val2 25610 cvxcl 26920 conway 27738 sleadd1 27930 addsass 27946 mulscom 28076 colline 28625 tglowdim2ln 28627 f1otrg 28847 f1otrge 28848 ax5seglem4 28908 ax5seglem5 28909 axcontlem3 28942 axcontlem8 28947 axcontlem9 28948 eengtrkg 28962 frgr3v 30250 xrofsup 32745 lmhmimasvsca 33015 erdszelem8 35230 resconn 35278 cvmliftmolem2 35314 cvmlift2lem12 35346 r1peuqusdeg1 35675 broutsideof3 36159 outsideoftr 36162 outsidele 36165 ltltncvr 39461 atcvrj2b 39470 cvrat4 39481 cvrat42 39482 2at0mat0 39563 islpln2a 39586 paddasslem11 39868 pmod1i 39886 lhpm0atN 40067 lautcvr 40130 cdlemg4c 40650 tendoplass 40821 tendodi1 40822 tendodi2 40823 dgrsub2 43167 grumnud 44318 ssinc 45123 ssdec 45124 ioondisj2 45532 ioondisj1 45533 ply1mulgsumlem2 48418 catprs 49042 fthcomf 49188 oppcthinco 49470 oppcthinendcALT 49472 |
| Copyright terms: Public domain | W3C validator |