![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 725 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: soltmin 6148 frfi 9322 wemappo 9592 ttrclss 9763 ttrclselem2 9769 iccsplit 13516 ccatswrd 14676 pfxccat3 14742 modfsummods 15797 pcdvdstr 16878 vdwlem12 16994 cshwsidrepswmod0 17097 iscatd2 17694 oppccomfpropd 17742 initoeu2lem0 18035 resssetc 18114 resscatc 18131 yonedalem4c 18302 mod1ile 18518 mod2ile 18519 prdssgrpd 18726 prdsmndd 18760 grprcan 18968 mulgnn0dir 19098 mulgdir 19100 mulgass 19105 mulgnn0di 19823 mulgdi 19824 dprd2da 20042 lmodprop2d 20900 lssintcl 20941 prdslmodd 20946 islmhm2 21016 islbs2 21135 islbs3 21136 dmatmul 22490 mdetmul 22616 restopnb 23170 iunconn 23423 1stcelcls 23456 blsscls2 24504 stdbdbl 24517 xrsblre 24818 icccmplem2 24830 itg1val2 25704 cvxcl 27013 conway 27829 sleadd1 28003 addsass 28019 mulscom 28140 colline 28576 tglowdim2ln 28578 f1otrg 28798 f1otrge 28799 ax5seglem4 28866 ax5seglem5 28867 axcontlem3 28900 axcontlem8 28905 axcontlem9 28906 eengtrkg 28920 frgr3v 30208 xrofsup 32671 lmhmimasvsca 32912 submomnd 32945 ogrpaddltbi 32953 erdszelem8 35026 resconn 35074 cvmliftmolem2 35110 cvmlift2lem12 35142 r1peuqusdeg1 35471 broutsideof3 35950 outsideoftr 35953 outsidele 35956 ltltncvr 39122 atcvrj2b 39131 cvrat4 39142 cvrat42 39143 2at0mat0 39224 islpln2a 39247 paddasslem11 39529 pmod1i 39547 lhpm0atN 39728 lautcvr 39791 cdlemg4c 40311 tendoplass 40482 tendodi1 40483 tendodi2 40484 dgrsub2 42796 grumnud 43960 ssinc 44688 ssdec 44689 ioondisj2 45111 ioondisj1 45112 ply1mulgsumlem2 47770 catprs 48332 |
Copyright terms: Public domain | W3C validator |