![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 726 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: soltmin 6138 frfi 9288 wemappo 9544 ttrclss 9715 ttrclselem2 9721 iccsplit 13462 ccatswrd 14618 pfxccat3 14684 modfsummods 15739 pcdvdstr 16809 vdwlem12 16925 cshwsidrepswmod0 17028 iscatd2 17625 oppccomfpropd 17673 initoeu2lem0 17963 resssetc 18042 resscatc 18059 yonedalem4c 18230 mod1ile 18446 mod2ile 18447 prdssgrpd 18624 prdsmndd 18658 grprcan 18858 mulgnn0dir 18984 mulgdir 18986 mulgass 18991 mulgnn0di 19693 mulgdi 19694 dprd2da 19912 lmodprop2d 20534 lssintcl 20575 prdslmodd 20580 islmhm2 20649 islbs2 20767 islbs3 20768 dmatmul 21999 mdetmul 22125 restopnb 22679 iunconn 22932 1stcelcls 22965 blsscls2 24013 stdbdbl 24026 xrsblre 24327 icccmplem2 24339 itg1val2 25201 cvxcl 26489 conway 27300 sleadd1 27472 addsass 27488 mulscom 27595 colline 27900 tglowdim2ln 27902 f1otrg 28122 f1otrge 28123 ax5seglem4 28190 ax5seglem5 28191 axcontlem3 28224 axcontlem8 28229 axcontlem9 28230 eengtrkg 28244 frgr3v 29528 xrofsup 31980 submomnd 32228 ogrpaddltbi 32236 erdszelem8 34189 resconn 34237 cvmliftmolem2 34273 cvmlift2lem12 34305 broutsideof3 35098 outsideoftr 35101 outsidele 35104 ltltncvr 38294 atcvrj2b 38303 cvrat4 38314 cvrat42 38315 2at0mat0 38396 islpln2a 38419 paddasslem11 38701 pmod1i 38719 lhpm0atN 38900 lautcvr 38963 cdlemg4c 39483 tendoplass 39654 tendodi1 39655 tendodi2 39656 dgrsub2 41877 grumnud 43045 ssinc 43776 ssdec 43777 ioondisj2 44206 ioondisj1 44207 ply1mulgsumlem2 47068 catprs 47631 |
Copyright terms: Public domain | W3C validator |