| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6109 frfi 9232 wemappo 9502 ttrclss 9673 ttrclselem2 9679 iccsplit 13446 ccatswrd 14633 pfxccat3 14699 modfsummods 15759 pcdvdstr 16847 vdwlem12 16963 cshwsidrepswmod0 17065 iscatd2 17642 oppccomfpropd 17688 initoeu2lem0 17975 resssetc 18054 resscatc 18071 yonedalem4c 18238 mod1ile 18452 mod2ile 18453 prdssgrpd 18660 prdsmndd 18697 grprcan 18905 mulgnn0dir 19036 mulgdir 19038 mulgass 19043 mulgnn0di 19755 mulgdi 19756 dprd2da 19974 lmodprop2d 20830 lssintcl 20870 prdslmodd 20875 islmhm2 20945 islbs2 21064 islbs3 21065 dmatmul 22384 mdetmul 22510 restopnb 23062 iunconn 23315 1stcelcls 23348 blsscls2 24392 stdbdbl 24405 xrsblre 24700 icccmplem2 24712 itg1val2 25585 cvxcl 26895 conway 27711 sleadd1 27896 addsass 27912 mulscom 28042 colline 28576 tglowdim2ln 28578 f1otrg 28798 f1otrge 28799 ax5seglem4 28859 ax5seglem5 28860 axcontlem3 28893 axcontlem8 28898 axcontlem9 28899 eengtrkg 28913 frgr3v 30204 xrofsup 32690 lmhmimasvsca 32980 submomnd 33024 ogrpaddltbi 33032 erdszelem8 35185 resconn 35233 cvmliftmolem2 35269 cvmlift2lem12 35301 r1peuqusdeg1 35630 broutsideof3 36114 outsideoftr 36117 outsidele 36120 ltltncvr 39417 atcvrj2b 39426 cvrat4 39437 cvrat42 39438 2at0mat0 39519 islpln2a 39542 paddasslem11 39824 pmod1i 39842 lhpm0atN 40023 lautcvr 40086 cdlemg4c 40606 tendoplass 40777 tendodi1 40778 tendodi2 40779 dgrsub2 43124 grumnud 44275 ssinc 45081 ssdec 45082 ioondisj2 45491 ioondisj1 45492 ply1mulgsumlem2 48376 catprs 49000 fthcomf 49146 oppcthinco 49428 oppcthinendcALT 49430 |
| Copyright terms: Public domain | W3C validator |