Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 725 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: soltmin 6056 frfi 9103 wemappo 9352 ttrclss 9522 ttrclselem2 9528 iccsplit 13263 ccatswrd 14426 pfxccat3 14492 modfsummods 15550 pcdvdstr 16622 vdwlem12 16738 cshwsidrepswmod0 16841 iscatd2 17435 oppccomfpropd 17483 initoeu2lem0 17773 resssetc 17852 resscatc 17869 yonedalem4c 18040 mod1ile 18256 mod2ile 18257 prdsmndd 18463 grprcan 18658 mulgnn0dir 18778 mulgdir 18780 mulgass 18785 mulgnn0di 19472 mulgdi 19473 dprd2da 19690 lmodprop2d 20230 lssintcl 20271 prdslmodd 20276 islmhm2 20345 islbs2 20461 islbs3 20462 dmatmul 21691 mdetmul 21817 restopnb 22371 iunconn 22624 1stcelcls 22657 blsscls2 23705 stdbdbl 23718 xrsblre 24019 icccmplem2 24031 itg1val2 24893 cvxcl 26179 colline 27055 tglowdim2ln 27057 f1otrg 27277 f1otrge 27278 ax5seglem4 27345 ax5seglem5 27346 axcontlem3 27379 axcontlem8 27384 axcontlem9 27385 eengtrkg 27399 frgr3v 28684 xrofsup 31135 submomnd 31381 ogrpaddltbi 31389 erdszelem8 33205 resconn 33253 cvmliftmolem2 33289 cvmlift2lem12 33321 conway 34038 broutsideof3 34473 outsideoftr 34476 outsidele 34479 ltltncvr 37479 atcvrj2b 37488 cvrat4 37499 cvrat42 37500 2at0mat0 37581 islpln2a 37604 paddasslem11 37886 pmod1i 37904 lhpm0atN 38085 lautcvr 38148 cdlemg4c 38668 tendoplass 38839 tendodi1 38840 tendodi2 38841 dgrsub2 40998 grumnud 41942 ssinc 42675 ssdec 42676 ioondisj2 43080 ioondisj1 43081 ply1mulgsumlem2 45786 catprs 46350 |
Copyright terms: Public domain | W3C validator |