| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6087 frfi 9176 wemappo 9442 ttrclss 9617 ttrclselem2 9623 iccsplit 13387 ccatswrd 14578 pfxccat3 14643 modfsummods 15702 pcdvdstr 16790 vdwlem12 16906 cshwsidrepswmod0 17008 iscatd2 17589 oppccomfpropd 17635 initoeu2lem0 17922 resssetc 18001 resscatc 18018 yonedalem4c 18185 mod1ile 18401 mod2ile 18402 prdssgrpd 18643 prdsmndd 18680 grprcan 18888 mulgnn0dir 19019 mulgdir 19021 mulgass 19026 mulgnn0di 19739 mulgdi 19740 dprd2da 19958 submomnd 20046 ogrpaddltbi 20053 lmodprop2d 20859 lssintcl 20899 prdslmodd 20904 islmhm2 20974 islbs2 21093 islbs3 21094 dmatmul 22413 mdetmul 22539 restopnb 23091 iunconn 23344 1stcelcls 23377 blsscls2 24420 stdbdbl 24433 xrsblre 24728 icccmplem2 24740 itg1val2 25613 cvxcl 26923 conway 27741 sleadd1 27933 addsass 27949 mulscom 28079 colline 28628 tglowdim2ln 28630 f1otrg 28850 f1otrge 28851 ax5seglem4 28912 ax5seglem5 28913 axcontlem3 28946 axcontlem8 28951 axcontlem9 28952 eengtrkg 28966 frgr3v 30257 xrofsup 32754 lmhmimasvsca 33027 erdszelem8 35263 resconn 35311 cvmliftmolem2 35347 cvmlift2lem12 35379 r1peuqusdeg1 35708 broutsideof3 36191 outsideoftr 36194 outsidele 36197 ltltncvr 39542 atcvrj2b 39551 cvrat4 39562 cvrat42 39563 2at0mat0 39644 islpln2a 39667 paddasslem11 39949 pmod1i 39967 lhpm0atN 40148 lautcvr 40211 cdlemg4c 40731 tendoplass 40902 tendodi1 40903 tendodi2 40904 dgrsub2 43252 grumnud 44403 ssinc 45208 ssdec 45209 ioondisj2 45617 ioondisj1 45618 ply1mulgsumlem2 48512 catprs 49136 fthcomf 49282 oppcthinco 49564 oppcthinendcALT 49566 |
| Copyright terms: Public domain | W3C validator |