![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 726 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: soltmin 6168 frfi 9349 wemappo 9618 ttrclss 9789 ttrclselem2 9795 iccsplit 13545 ccatswrd 14716 pfxccat3 14782 modfsummods 15841 pcdvdstr 16923 vdwlem12 17039 cshwsidrepswmod0 17142 iscatd2 17739 oppccomfpropd 17787 initoeu2lem0 18080 resssetc 18159 resscatc 18176 yonedalem4c 18347 mod1ile 18563 mod2ile 18564 prdssgrpd 18771 prdsmndd 18805 grprcan 19013 mulgnn0dir 19144 mulgdir 19146 mulgass 19151 mulgnn0di 19867 mulgdi 19868 dprd2da 20086 lmodprop2d 20944 lssintcl 20985 prdslmodd 20990 islmhm2 21060 islbs2 21179 islbs3 21180 dmatmul 22524 mdetmul 22650 restopnb 23204 iunconn 23457 1stcelcls 23490 blsscls2 24538 stdbdbl 24551 xrsblre 24852 icccmplem2 24864 itg1val2 25738 cvxcl 27046 conway 27862 sleadd1 28040 addsass 28056 mulscom 28183 colline 28675 tglowdim2ln 28677 f1otrg 28897 f1otrge 28898 ax5seglem4 28965 ax5seglem5 28966 axcontlem3 28999 axcontlem8 29004 axcontlem9 29005 eengtrkg 29019 frgr3v 30307 xrofsup 32774 lmhmimasvsca 33025 submomnd 33060 ogrpaddltbi 33068 erdszelem8 35166 resconn 35214 cvmliftmolem2 35250 cvmlift2lem12 35282 r1peuqusdeg1 35611 broutsideof3 36090 outsideoftr 36093 outsidele 36096 ltltncvr 39380 atcvrj2b 39389 cvrat4 39400 cvrat42 39401 2at0mat0 39482 islpln2a 39505 paddasslem11 39787 pmod1i 39805 lhpm0atN 39986 lautcvr 40049 cdlemg4c 40569 tendoplass 40740 tendodi1 40741 tendodi2 40742 dgrsub2 43092 grumnud 44255 ssinc 44989 ssdec 44990 ioondisj2 45411 ioondisj1 45412 ply1mulgsumlem2 48116 catprs 48678 |
Copyright terms: Public domain | W3C validator |