![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: soltmin 6159 frfi 9319 wemappo 9587 ttrclss 9758 ttrclselem2 9764 iccsplit 13522 ccatswrd 14703 pfxccat3 14769 modfsummods 15826 pcdvdstr 16910 vdwlem12 17026 cshwsidrepswmod0 17129 iscatd2 17726 oppccomfpropd 17774 initoeu2lem0 18067 resssetc 18146 resscatc 18163 yonedalem4c 18334 mod1ile 18551 mod2ile 18552 prdssgrpd 18759 prdsmndd 18796 grprcan 19004 mulgnn0dir 19135 mulgdir 19137 mulgass 19142 mulgnn0di 19858 mulgdi 19859 dprd2da 20077 lmodprop2d 20939 lssintcl 20980 prdslmodd 20985 islmhm2 21055 islbs2 21174 islbs3 21175 dmatmul 22519 mdetmul 22645 restopnb 23199 iunconn 23452 1stcelcls 23485 blsscls2 24533 stdbdbl 24546 xrsblre 24847 icccmplem2 24859 itg1val2 25733 cvxcl 27043 conway 27859 sleadd1 28037 addsass 28053 mulscom 28180 colline 28672 tglowdim2ln 28674 f1otrg 28894 f1otrge 28895 ax5seglem4 28962 ax5seglem5 28963 axcontlem3 28996 axcontlem8 29001 axcontlem9 29002 eengtrkg 29016 frgr3v 30304 xrofsup 32778 lmhmimasvsca 33027 submomnd 33070 ogrpaddltbi 33078 erdszelem8 35183 resconn 35231 cvmliftmolem2 35267 cvmlift2lem12 35299 r1peuqusdeg1 35628 broutsideof3 36108 outsideoftr 36111 outsidele 36114 ltltncvr 39406 atcvrj2b 39415 cvrat4 39426 cvrat42 39427 2at0mat0 39508 islpln2a 39531 paddasslem11 39813 pmod1i 39831 lhpm0atN 40012 lautcvr 40075 cdlemg4c 40595 tendoplass 40766 tendodi1 40767 tendodi2 40768 dgrsub2 43124 grumnud 44282 ssinc 45027 ssdec 45028 ioondisj2 45446 ioondisj1 45447 ply1mulgsumlem2 48233 catprs 48800 |
Copyright terms: Public domain | W3C validator |