| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6130 frfi 9298 wemappo 9568 ttrclss 9739 ttrclselem2 9745 iccsplit 13507 ccatswrd 14691 pfxccat3 14757 modfsummods 15814 pcdvdstr 16901 vdwlem12 17017 cshwsidrepswmod0 17119 iscatd2 17698 oppccomfpropd 17744 initoeu2lem0 18031 resssetc 18110 resscatc 18127 yonedalem4c 18294 mod1ile 18508 mod2ile 18509 prdssgrpd 18716 prdsmndd 18753 grprcan 18961 mulgnn0dir 19092 mulgdir 19094 mulgass 19099 mulgnn0di 19811 mulgdi 19812 dprd2da 20030 lmodprop2d 20886 lssintcl 20926 prdslmodd 20931 islmhm2 21001 islbs2 21120 islbs3 21121 dmatmul 22440 mdetmul 22566 restopnb 23118 iunconn 23371 1stcelcls 23404 blsscls2 24448 stdbdbl 24461 xrsblre 24756 icccmplem2 24768 itg1val2 25642 cvxcl 26952 conway 27768 sleadd1 27953 addsass 27969 mulscom 28099 colline 28633 tglowdim2ln 28635 f1otrg 28855 f1otrge 28856 ax5seglem4 28916 ax5seglem5 28917 axcontlem3 28950 axcontlem8 28955 axcontlem9 28956 eengtrkg 28970 frgr3v 30261 xrofsup 32749 lmhmimasvsca 33039 submomnd 33083 ogrpaddltbi 33091 erdszelem8 35225 resconn 35273 cvmliftmolem2 35309 cvmlift2lem12 35341 r1peuqusdeg1 35670 broutsideof3 36149 outsideoftr 36152 outsidele 36155 ltltncvr 39447 atcvrj2b 39456 cvrat4 39467 cvrat42 39468 2at0mat0 39549 islpln2a 39572 paddasslem11 39854 pmod1i 39872 lhpm0atN 40053 lautcvr 40116 cdlemg4c 40636 tendoplass 40807 tendodi1 40808 tendodi2 40809 dgrsub2 43126 grumnud 44277 ssinc 45078 ssdec 45079 ioondisj2 45489 ioondisj1 45490 ply1mulgsumlem2 48330 catprs 48953 fthcomf 49064 oppcthinco 49292 oppcthinendcALT 49294 |
| Copyright terms: Public domain | W3C validator |