Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 724 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: soltmin 6034 frfi 9046 wemappo 9295 ttrclss 9465 ttrclselem2 9471 iccsplit 13227 ccatswrd 14391 pfxccat3 14457 modfsummods 15515 pcdvdstr 16587 vdwlem12 16703 cshwsidrepswmod0 16806 iscatd2 17400 oppccomfpropd 17448 initoeu2lem0 17738 resssetc 17817 resscatc 17834 yonedalem4c 18005 mod1ile 18221 mod2ile 18222 prdsmndd 18428 grprcan 18623 mulgnn0dir 18743 mulgdir 18745 mulgass 18750 mulgnn0di 19437 mulgdi 19438 dprd2da 19655 lmodprop2d 20195 lssintcl 20236 prdslmodd 20241 islmhm2 20310 islbs2 20426 islbs3 20427 dmatmul 21656 mdetmul 21782 restopnb 22336 iunconn 22589 1stcelcls 22622 blsscls2 23670 stdbdbl 23683 xrsblre 23984 icccmplem2 23996 itg1val2 24858 cvxcl 26144 colline 27020 tglowdim2ln 27022 f1otrg 27242 f1otrge 27243 ax5seglem4 27310 ax5seglem5 27311 axcontlem3 27344 axcontlem8 27349 axcontlem9 27350 eengtrkg 27364 frgr3v 28647 xrofsup 31098 submomnd 31344 ogrpaddltbi 31352 erdszelem8 33168 resconn 33216 cvmliftmolem2 33252 cvmlift2lem12 33284 conway 34001 broutsideof3 34436 outsideoftr 34439 outsidele 34442 ltltncvr 37445 atcvrj2b 37454 cvrat4 37465 cvrat42 37466 2at0mat0 37547 islpln2a 37570 paddasslem11 37852 pmod1i 37870 lhpm0atN 38051 lautcvr 38114 cdlemg4c 38634 tendoplass 38805 tendodi1 38806 tendodi2 38807 dgrsub2 40968 grumnud 41885 ssinc 42618 ssdec 42619 ioondisj2 43012 ioondisj1 43013 ply1mulgsumlem2 45706 catprs 46270 |
Copyright terms: Public domain | W3C validator |