![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1139 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 726 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: soltmin 6138 frfi 9288 wemappo 9544 ttrclss 9715 ttrclselem2 9721 iccsplit 13462 ccatswrd 14618 pfxccat3 14684 modfsummods 15739 pcdvdstr 16809 vdwlem12 16925 cshwsidrepswmod0 17028 iscatd2 17625 oppccomfpropd 17673 initoeu2lem0 17963 resssetc 18042 resscatc 18059 yonedalem4c 18230 mod1ile 18446 mod2ile 18447 prdssgrpd 18624 prdsmndd 18658 grprcan 18858 mulgnn0dir 18984 mulgdir 18986 mulgass 18991 mulgnn0di 19693 mulgdi 19694 dprd2da 19912 lmodprop2d 20534 lssintcl 20575 prdslmodd 20580 islmhm2 20649 islbs2 20767 islbs3 20768 dmatmul 21999 mdetmul 22125 restopnb 22679 iunconn 22932 1stcelcls 22965 blsscls2 24013 stdbdbl 24026 xrsblre 24327 icccmplem2 24339 itg1val2 25201 cvxcl 26489 conway 27301 sleadd1 27475 addsass 27491 mulscom 27598 colline 27931 tglowdim2ln 27933 f1otrg 28153 f1otrge 28154 ax5seglem4 28221 ax5seglem5 28222 axcontlem3 28255 axcontlem8 28260 axcontlem9 28261 eengtrkg 28275 frgr3v 29559 xrofsup 32011 submomnd 32259 ogrpaddltbi 32267 erdszelem8 34220 resconn 34268 cvmliftmolem2 34304 cvmlift2lem12 34336 broutsideof3 35129 outsideoftr 35132 outsidele 35135 ltltncvr 38342 atcvrj2b 38351 cvrat4 38362 cvrat42 38363 2at0mat0 38444 islpln2a 38467 paddasslem11 38749 pmod1i 38767 lhpm0atN 38948 lautcvr 39011 cdlemg4c 39531 tendoplass 39702 tendodi1 39703 tendodi2 39704 dgrsub2 41925 grumnud 43093 ssinc 43824 ssdec 43825 ioondisj2 44254 ioondisj1 44255 ply1mulgsumlem2 47116 catprs 47679 |
Copyright terms: Public domain | W3C validator |