![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 725 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: soltmin 6134 frfi 9284 wemappo 9540 ttrclss 9711 ttrclselem2 9717 iccsplit 13458 ccatswrd 14614 pfxccat3 14680 modfsummods 15735 pcdvdstr 16805 vdwlem12 16921 cshwsidrepswmod0 17024 iscatd2 17621 oppccomfpropd 17669 initoeu2lem0 17959 resssetc 18038 resscatc 18055 yonedalem4c 18226 mod1ile 18442 mod2ile 18443 prdssgrpd 18620 prdsmndd 18654 grprcan 18854 mulgnn0dir 18978 mulgdir 18980 mulgass 18985 mulgnn0di 19687 mulgdi 19688 dprd2da 19906 lmodprop2d 20526 lssintcl 20567 prdslmodd 20572 islmhm2 20641 islbs2 20759 islbs3 20760 dmatmul 21990 mdetmul 22116 restopnb 22670 iunconn 22923 1stcelcls 22956 blsscls2 24004 stdbdbl 24017 xrsblre 24318 icccmplem2 24330 itg1val2 25192 cvxcl 26478 conway 27289 sleadd1 27461 addsass 27477 mulscom 27584 colline 27889 tglowdim2ln 27891 f1otrg 28111 f1otrge 28112 ax5seglem4 28179 ax5seglem5 28180 axcontlem3 28213 axcontlem8 28218 axcontlem9 28219 eengtrkg 28233 frgr3v 29517 xrofsup 31967 submomnd 32215 ogrpaddltbi 32223 erdszelem8 34177 resconn 34225 cvmliftmolem2 34261 cvmlift2lem12 34293 broutsideof3 35086 outsideoftr 35089 outsidele 35092 ltltncvr 38282 atcvrj2b 38291 cvrat4 38302 cvrat42 38303 2at0mat0 38384 islpln2a 38407 paddasslem11 38689 pmod1i 38707 lhpm0atN 38888 lautcvr 38951 cdlemg4c 39471 tendoplass 39642 tendodi1 39643 tendodi2 39644 dgrsub2 41862 grumnud 43030 ssinc 43761 ssdec 43762 ioondisj2 44192 ioondisj1 44193 ply1mulgsumlem2 47021 catprs 47584 |
Copyright terms: Public domain | W3C validator |