Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antlr 723 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: soltmin 6038 frfi 9020 wemappo 9269 ttrclss 9439 ttrclselem2 9445 iccsplit 13199 ccatswrd 14362 pfxccat3 14428 modfsummods 15486 pcdvdstr 16558 vdwlem12 16674 cshwsidrepswmod0 16777 iscatd2 17371 oppccomfpropd 17419 initoeu2lem0 17709 resssetc 17788 resscatc 17805 yonedalem4c 17976 mod1ile 18192 mod2ile 18193 prdsmndd 18399 grprcan 18594 mulgnn0dir 18714 mulgdir 18716 mulgass 18721 mulgnn0di 19408 mulgdi 19409 dprd2da 19626 lmodprop2d 20166 lssintcl 20207 prdslmodd 20212 islmhm2 20281 islbs2 20397 islbs3 20398 dmatmul 21627 mdetmul 21753 restopnb 22307 iunconn 22560 1stcelcls 22593 blsscls2 23641 stdbdbl 23654 xrsblre 23955 icccmplem2 23967 itg1val2 24829 cvxcl 26115 colline 26991 tglowdim2ln 26993 f1otrg 27213 f1otrge 27214 ax5seglem4 27281 ax5seglem5 27282 axcontlem3 27315 axcontlem8 27320 axcontlem9 27321 eengtrkg 27335 frgr3v 28618 xrofsup 31069 submomnd 31315 ogrpaddltbi 31323 erdszelem8 33139 resconn 33187 cvmliftmolem2 33223 cvmlift2lem12 33255 conway 33972 broutsideof3 34407 outsideoftr 34410 outsidele 34413 ltltncvr 37416 atcvrj2b 37425 cvrat4 37436 cvrat42 37437 2at0mat0 37518 islpln2a 37541 paddasslem11 37823 pmod1i 37841 lhpm0atN 38022 lautcvr 38085 cdlemg4c 38605 tendoplass 38776 tendodi1 38777 tendodi2 38778 dgrsub2 40940 grumnud 41857 ssinc 42590 ssdec 42591 ioondisj2 42985 ioondisj1 42986 ply1mulgsumlem2 45680 catprs 46244 |
Copyright terms: Public domain | W3C validator |