| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simplr3 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antlr 727 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜏) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: soltmin 6112 frfi 9239 wemappo 9509 ttrclss 9680 ttrclselem2 9686 iccsplit 13453 ccatswrd 14640 pfxccat3 14706 modfsummods 15766 pcdvdstr 16854 vdwlem12 16970 cshwsidrepswmod0 17072 iscatd2 17649 oppccomfpropd 17695 initoeu2lem0 17982 resssetc 18061 resscatc 18078 yonedalem4c 18245 mod1ile 18459 mod2ile 18460 prdssgrpd 18667 prdsmndd 18704 grprcan 18912 mulgnn0dir 19043 mulgdir 19045 mulgass 19050 mulgnn0di 19762 mulgdi 19763 dprd2da 19981 lmodprop2d 20837 lssintcl 20877 prdslmodd 20882 islmhm2 20952 islbs2 21071 islbs3 21072 dmatmul 22391 mdetmul 22517 restopnb 23069 iunconn 23322 1stcelcls 23355 blsscls2 24399 stdbdbl 24412 xrsblre 24707 icccmplem2 24719 itg1val2 25592 cvxcl 26902 conway 27718 sleadd1 27903 addsass 27919 mulscom 28049 colline 28583 tglowdim2ln 28585 f1otrg 28805 f1otrge 28806 ax5seglem4 28866 ax5seglem5 28867 axcontlem3 28900 axcontlem8 28905 axcontlem9 28906 eengtrkg 28920 frgr3v 30211 xrofsup 32697 lmhmimasvsca 32987 submomnd 33031 ogrpaddltbi 33039 erdszelem8 35192 resconn 35240 cvmliftmolem2 35276 cvmlift2lem12 35308 r1peuqusdeg1 35637 broutsideof3 36121 outsideoftr 36124 outsidele 36127 ltltncvr 39424 atcvrj2b 39433 cvrat4 39444 cvrat42 39445 2at0mat0 39526 islpln2a 39549 paddasslem11 39831 pmod1i 39849 lhpm0atN 40030 lautcvr 40093 cdlemg4c 40613 tendoplass 40784 tendodi1 40785 tendodi2 40786 dgrsub2 43131 grumnud 44282 ssinc 45088 ssdec 45089 ioondisj2 45498 ioondisj1 45499 ply1mulgsumlem2 48380 catprs 49004 fthcomf 49150 oppcthinco 49432 oppcthinendcALT 49434 |
| Copyright terms: Public domain | W3C validator |