Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjpreimafv Structured version   Visualization version   GIF version

Theorem fundcmpsurinjpreimafv 46066
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
fundcmpsurinjpreimafv ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝐴,𝑔,   𝐵,𝑔,,𝑥   𝑧,𝐵   𝑔,𝐹,   𝑃,𝑔,,𝑥   𝑥,𝑉,𝑔
Allowed substitution hints:   𝑃(𝑧)   𝑉(𝑧,)

Proof of Theorem fundcmpsurinjpreimafv
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21fundcmpsurbijinjpreimafv 46065 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑓𝑗((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)))
3 vex 3478 . . . . . . 7 𝑗 ∈ V
4 vex 3478 . . . . . . 7 𝑓 ∈ V
53, 4coex 7920 . . . . . 6 (𝑗𝑓) ∈ V
6 simprl1 1218 . . . . . . 7 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → 𝑔:𝐴onto𝑃)
7 simp3 1138 . . . . . . . . 9 ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) → 𝑗:(𝐹𝐴)–1-1𝐵)
8 f1of1 6832 . . . . . . . . . 10 (𝑓:𝑃1-1-onto→(𝐹𝐴) → 𝑓:𝑃1-1→(𝐹𝐴))
983ad2ant2 1134 . . . . . . . . 9 ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) → 𝑓:𝑃1-1→(𝐹𝐴))
10 f1co 6799 . . . . . . . . 9 ((𝑗:(𝐹𝐴)–1-1𝐵𝑓:𝑃1-1→(𝐹𝐴)) → (𝑗𝑓):𝑃1-1𝐵)
117, 9, 10syl2anc 584 . . . . . . . 8 ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) → (𝑗𝑓):𝑃1-1𝐵)
1211ad2antrl 726 . . . . . . 7 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → (𝑗𝑓):𝑃1-1𝐵)
13 simprr 771 . . . . . . 7 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → 𝐹 = ((𝑗𝑓) ∘ 𝑔))
146, 12, 133jca 1128 . . . . . 6 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → (𝑔:𝐴onto𝑃 ∧ (𝑗𝑓):𝑃1-1𝐵𝐹 = ((𝑗𝑓) ∘ 𝑔)))
15 f1eq1 6782 . . . . . . . 8 ( = (𝑗𝑓) → (:𝑃1-1𝐵 ↔ (𝑗𝑓):𝑃1-1𝐵))
16 coeq1 5857 . . . . . . . . 9 ( = (𝑗𝑓) → (𝑔) = ((𝑗𝑓) ∘ 𝑔))
1716eqeq2d 2743 . . . . . . . 8 ( = (𝑗𝑓) → (𝐹 = (𝑔) ↔ 𝐹 = ((𝑗𝑓) ∘ 𝑔)))
1815, 173anbi23d 1439 . . . . . . 7 ( = (𝑗𝑓) → ((𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)) ↔ (𝑔:𝐴onto𝑃 ∧ (𝑗𝑓):𝑃1-1𝐵𝐹 = ((𝑗𝑓) ∘ 𝑔))))
1918spcegv 3587 . . . . . 6 ((𝑗𝑓) ∈ V → ((𝑔:𝐴onto𝑃 ∧ (𝑗𝑓):𝑃1-1𝐵𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
205, 14, 19mpsyl 68 . . . . 5 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
2120ex 413 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → (((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
2221exlimdvv 1937 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (∃𝑓𝑗((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
2322eximdv 1920 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → (∃𝑔𝑓𝑗((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
242, 23mpd 15 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2709  wrex 3070  Vcvv 3474  {csn 4628  ccnv 5675  cima 5679  ccom 5680  wf 6539  1-1wf1 6540  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  fundcmpsurinj  46067
  Copyright terms: Public domain W3C validator