Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjpreimafv Structured version   Visualization version   GIF version

Theorem fundcmpsurinjpreimafv 47409
Description: Every function 𝐹:𝐴𝐵 can be decomposed into a surjective function onto 𝑃 and an injective function from 𝑃. (Contributed by AV, 12-Mar-2024.) (Proof shortened by AV, 22-Mar-2024.)
Hypothesis
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
fundcmpsurinjpreimafv ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝐴,𝑔,   𝐵,𝑔,,𝑥   𝑧,𝐵   𝑔,𝐹,   𝑃,𝑔,,𝑥   𝑥,𝑉,𝑔
Allowed substitution hints:   𝑃(𝑧)   𝑉(𝑧,)

Proof of Theorem fundcmpsurinjpreimafv
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fundcmpsurinj.p . . 3 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21fundcmpsurbijinjpreimafv 47408 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔𝑓𝑗((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)))
3 vex 3451 . . . . . . 7 𝑗 ∈ V
4 vex 3451 . . . . . . 7 𝑓 ∈ V
53, 4coex 7906 . . . . . 6 (𝑗𝑓) ∈ V
6 simprl1 1219 . . . . . . 7 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → 𝑔:𝐴onto𝑃)
7 simp3 1138 . . . . . . . . 9 ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) → 𝑗:(𝐹𝐴)–1-1𝐵)
8 f1of1 6799 . . . . . . . . . 10 (𝑓:𝑃1-1-onto→(𝐹𝐴) → 𝑓:𝑃1-1→(𝐹𝐴))
983ad2ant2 1134 . . . . . . . . 9 ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) → 𝑓:𝑃1-1→(𝐹𝐴))
10 f1co 6767 . . . . . . . . 9 ((𝑗:(𝐹𝐴)–1-1𝐵𝑓:𝑃1-1→(𝐹𝐴)) → (𝑗𝑓):𝑃1-1𝐵)
117, 9, 10syl2anc 584 . . . . . . . 8 ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) → (𝑗𝑓):𝑃1-1𝐵)
1211ad2antrl 728 . . . . . . 7 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → (𝑗𝑓):𝑃1-1𝐵)
13 simprr 772 . . . . . . 7 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → 𝐹 = ((𝑗𝑓) ∘ 𝑔))
146, 12, 133jca 1128 . . . . . 6 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → (𝑔:𝐴onto𝑃 ∧ (𝑗𝑓):𝑃1-1𝐵𝐹 = ((𝑗𝑓) ∘ 𝑔)))
15 f1eq1 6751 . . . . . . . 8 ( = (𝑗𝑓) → (:𝑃1-1𝐵 ↔ (𝑗𝑓):𝑃1-1𝐵))
16 coeq1 5821 . . . . . . . . 9 ( = (𝑗𝑓) → (𝑔) = ((𝑗𝑓) ∘ 𝑔))
1716eqeq2d 2740 . . . . . . . 8 ( = (𝑗𝑓) → (𝐹 = (𝑔) ↔ 𝐹 = ((𝑗𝑓) ∘ 𝑔)))
1815, 173anbi23d 1441 . . . . . . 7 ( = (𝑗𝑓) → ((𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)) ↔ (𝑔:𝐴onto𝑃 ∧ (𝑗𝑓):𝑃1-1𝐵𝐹 = ((𝑗𝑓) ∘ 𝑔))))
1918spcegv 3563 . . . . . 6 ((𝑗𝑓) ∈ V → ((𝑔:𝐴onto𝑃 ∧ (𝑗𝑓):𝑃1-1𝐵𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
205, 14, 19mpsyl 68 . . . . 5 (((𝐹:𝐴𝐵𝐴𝑉) ∧ ((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔))) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
2120ex 412 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → (((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
2221exlimdvv 1934 . . 3 ((𝐹:𝐴𝐵𝐴𝑉) → (∃𝑓𝑗((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
2322eximdv 1917 . 2 ((𝐹:𝐴𝐵𝐴𝑉) → (∃𝑔𝑓𝑗((𝑔:𝐴onto𝑃𝑓:𝑃1-1-onto→(𝐹𝐴) ∧ 𝑗:(𝐹𝐴)–1-1𝐵) ∧ 𝐹 = ((𝑗𝑓) ∘ 𝑔)) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔))))
242, 23mpd 15 1 ((𝐹:𝐴𝐵𝐴𝑉) → ∃𝑔(𝑔:𝐴onto𝑃:𝑃1-1𝐵𝐹 = (𝑔)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  {csn 4589  ccnv 5637  cima 5641  ccom 5642  wf 6507  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  fundcmpsurinj  47410
  Copyright terms: Public domain W3C validator