Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayval Structured version   Visualization version   GIF version

Theorem bdayval 32390
 Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdayval (𝐴 No → ( bday 𝐴) = dom 𝐴)

Proof of Theorem bdayval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmexg 7375 . 2 (𝐴 No → dom 𝐴 ∈ V)
2 dmeq 5569 . . 3 (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴)
3 df-bday 32387 . . 3 bday = (𝑥 No ↦ dom 𝑥)
42, 3fvmptg 6540 . 2 ((𝐴 No ∧ dom 𝐴 ∈ V) → ( bday 𝐴) = dom 𝐴)
51, 4mpdan 677 1 (𝐴 No → ( bday 𝐴) = dom 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1601   ∈ wcel 2106  Vcvv 3397  dom cdm 5355  ‘cfv 6135   No csur 32382   bday cbday 32384 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-iota 6099  df-fun 6137  df-fv 6143  df-bday 32387 This theorem is referenced by:  nofnbday  32394  fvnobday  32418  nodenselem5  32427  nodense  32431  nosupno  32438  nosupbday  32440  noetalem3  32454  noetalem4  32455
 Copyright terms: Public domain W3C validator