MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayval Structured version   Visualization version   GIF version

Theorem bdayval 27617
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdayval (𝐴 No → ( bday 𝐴) = dom 𝐴)

Proof of Theorem bdayval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmexg 7902 . 2 (𝐴 No → dom 𝐴 ∈ V)
2 dmeq 5888 . . 3 (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴)
3 df-bday 27613 . . 3 bday = (𝑥 No ↦ dom 𝑥)
42, 3fvmptg 6989 . 2 ((𝐴 No ∧ dom 𝐴 ∈ V) → ( bday 𝐴) = dom 𝐴)
51, 4mpdan 687 1 (𝐴 No → ( bday 𝐴) = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  dom cdm 5659  cfv 6536   No csur 27608   bday cbday 27610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-bday 27613
This theorem is referenced by:  nofnbday  27621  fvnobday  27647  nodenselem5  27657  nodense  27661  nosupno  27672  nosupbday  27674  noinfno  27687  noinfbday  27689  noetasuplem4  27705  noetainflem4  27709  onnobdayg  43421  bdaybndex  43422  bdaybndbday  43423
  Copyright terms: Public domain W3C validator