![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayval | Structured version Visualization version GIF version |
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
Ref | Expression |
---|---|
bdayval | ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7941 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ V) | |
2 | dmeq 5928 | . . 3 ⊢ (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴) | |
3 | df-bday 27707 | . . 3 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 2, 3 | fvmptg 7027 | . 2 ⊢ ((𝐴 ∈ No ∧ dom 𝐴 ∈ V) → ( bday ‘𝐴) = dom 𝐴) |
5 | 1, 4 | mpdan 686 | 1 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 dom cdm 5700 ‘cfv 6573 No csur 27702 bday cbday 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-bday 27707 |
This theorem is referenced by: nofnbday 27715 fvnobday 27741 nodenselem5 27751 nodense 27755 nosupno 27766 nosupbday 27768 noinfno 27781 noinfbday 27783 noetasuplem4 27799 noetainflem4 27803 onnobdayg 43392 bdaybndex 43393 bdaybndbday 43394 |
Copyright terms: Public domain | W3C validator |