![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayval | Structured version Visualization version GIF version |
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
Ref | Expression |
---|---|
bdayval | ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7375 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ V) | |
2 | dmeq 5569 | . . 3 ⊢ (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴) | |
3 | df-bday 32387 | . . 3 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 2, 3 | fvmptg 6540 | . 2 ⊢ ((𝐴 ∈ No ∧ dom 𝐴 ∈ V) → ( bday ‘𝐴) = dom 𝐴) |
5 | 1, 4 | mpdan 677 | 1 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 Vcvv 3397 dom cdm 5355 ‘cfv 6135 No csur 32382 bday cbday 32384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fv 6143 df-bday 32387 |
This theorem is referenced by: nofnbday 32394 fvnobday 32418 nodenselem5 32427 nodense 32431 nosupno 32438 nosupbday 32440 noetalem3 32454 noetalem4 32455 |
Copyright terms: Public domain | W3C validator |