MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayval Structured version   Visualization version   GIF version

Theorem bdayval 27148
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdayval (𝐴 No → ( bday 𝐴) = dom 𝐴)

Proof of Theorem bdayval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmexg 7893 . 2 (𝐴 No → dom 𝐴 ∈ V)
2 dmeq 5903 . . 3 (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴)
3 df-bday 27145 . . 3 bday = (𝑥 No ↦ dom 𝑥)
42, 3fvmptg 6996 . 2 ((𝐴 No ∧ dom 𝐴 ∈ V) → ( bday 𝐴) = dom 𝐴)
51, 4mpdan 685 1 (𝐴 No → ( bday 𝐴) = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  dom cdm 5676  cfv 6543   No csur 27140   bday cbday 27142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-bday 27145
This theorem is referenced by:  nofnbday  27152  fvnobday  27178  nodenselem5  27188  nodense  27192  nosupno  27203  nosupbday  27205  noinfno  27218  noinfbday  27220  noetasuplem4  27236  noetainflem4  27240  onnobdayg  42171  bdaybndex  42172  bdaybndbday  42173
  Copyright terms: Public domain W3C validator