Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bdayval | Structured version Visualization version GIF version |
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) |
Ref | Expression |
---|---|
bdayval | ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmexg 7750 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ V) | |
2 | dmeq 5812 | . . 3 ⊢ (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴) | |
3 | df-bday 33848 | . . 3 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
4 | 2, 3 | fvmptg 6873 | . 2 ⊢ ((𝐴 ∈ No ∧ dom 𝐴 ∈ V) → ( bday ‘𝐴) = dom 𝐴) |
5 | 1, 4 | mpdan 684 | 1 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 dom cdm 5589 ‘cfv 6433 No csur 33843 bday cbday 33845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-bday 33848 |
This theorem is referenced by: nofnbday 33855 fvnobday 33881 nodenselem5 33891 nodense 33895 nosupno 33906 nosupbday 33908 noinfno 33921 noinfbday 33923 noetasuplem4 33939 noetainflem4 33943 |
Copyright terms: Public domain | W3C validator |