Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayval Structured version   Visualization version   GIF version

Theorem bdayval 33851
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdayval (𝐴 No → ( bday 𝐴) = dom 𝐴)

Proof of Theorem bdayval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmexg 7750 . 2 (𝐴 No → dom 𝐴 ∈ V)
2 dmeq 5812 . . 3 (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴)
3 df-bday 33848 . . 3 bday = (𝑥 No ↦ dom 𝑥)
42, 3fvmptg 6873 . 2 ((𝐴 No ∧ dom 𝐴 ∈ V) → ( bday 𝐴) = dom 𝐴)
51, 4mpdan 684 1 (𝐴 No → ( bday 𝐴) = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  dom cdm 5589  cfv 6433   No csur 33843   bday cbday 33845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-bday 33848
This theorem is referenced by:  nofnbday  33855  fvnobday  33881  nodenselem5  33891  nodense  33895  nosupno  33906  nosupbday  33908  noinfno  33921  noinfbday  33923  noetasuplem4  33939  noetainflem4  33943
  Copyright terms: Public domain W3C validator