MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayval Structured version   Visualization version   GIF version

Theorem bdayval 27711
Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.)
Assertion
Ref Expression
bdayval (𝐴 No → ( bday 𝐴) = dom 𝐴)

Proof of Theorem bdayval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmexg 7941 . 2 (𝐴 No → dom 𝐴 ∈ V)
2 dmeq 5928 . . 3 (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴)
3 df-bday 27707 . . 3 bday = (𝑥 No ↦ dom 𝑥)
42, 3fvmptg 7027 . 2 ((𝐴 No ∧ dom 𝐴 ∈ V) → ( bday 𝐴) = dom 𝐴)
51, 4mpdan 686 1 (𝐴 No → ( bday 𝐴) = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  dom cdm 5700  cfv 6573   No csur 27702   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-bday 27707
This theorem is referenced by:  nofnbday  27715  fvnobday  27741  nodenselem5  27751  nodense  27755  nosupno  27766  nosupbday  27768  noinfno  27781  noinfbday  27783  noetasuplem4  27799  noetainflem4  27803  onnobdayg  43392  bdaybndex  43393  bdaybndbday  43394
  Copyright terms: Public domain W3C validator