|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > bdayval | Structured version Visualization version GIF version | ||
| Description: The value of the birthday function within the surreals. (Contributed by Scott Fenton, 14-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| bdayval | ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dmexg 7924 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ V) | |
| 2 | dmeq 5913 | . . 3 ⊢ (𝑥 = 𝐴 → dom 𝑥 = dom 𝐴) | |
| 3 | df-bday 27690 | . . 3 ⊢ bday = (𝑥 ∈ No ↦ dom 𝑥) | |
| 4 | 2, 3 | fvmptg 7013 | . 2 ⊢ ((𝐴 ∈ No ∧ dom 𝐴 ∈ V) → ( bday ‘𝐴) = dom 𝐴) | 
| 5 | 1, 4 | mpdan 687 | 1 ⊢ (𝐴 ∈ No → ( bday ‘𝐴) = dom 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 dom cdm 5684 ‘cfv 6560 No csur 27685 bday cbday 27687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fv 6568 df-bday 27690 | 
| This theorem is referenced by: nofnbday 27698 fvnobday 27724 nodenselem5 27734 nodense 27738 nosupno 27749 nosupbday 27751 noinfno 27764 noinfbday 27766 noetasuplem4 27782 noetainflem4 27786 onnobdayg 43448 bdaybndex 43449 bdaybndbday 43450 | 
| Copyright terms: Public domain | W3C validator |