MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sltasym Structured version   Visualization version   GIF version

Theorem sltasym 27632
Description: Surreal less-than is asymmetric. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
sltasym ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴))

Proof of Theorem sltasym
StepHypRef Expression
1 sltso 27560 . 2 <s Or No
2 soasym 5612 . 2 (( <s Or No ∧ (𝐴 No 𝐵 No )) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴))
31, 2mpan 687 1 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵 → ¬ 𝐵 <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2098   class class class wbr 5141   Or wor 5580   No csur 27524   <s cslt 27525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8464  df-2o 8465  df-no 27527  df-slt 27528
This theorem is referenced by:  sletric  27648  sltled  27653  right1s  27773  sltmul2  28022
  Copyright terms: Public domain W3C validator